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Credit Risk Modeling with Delayed Information ∗†

Takanori Adachi ‡ Ryozo Miura § Hidetoshi Nakagawa ¶

Abstract

We introduce a notion of market times that are stochastic processes in order to represent information
delay in structural credit risk models. The market times are extensions of the time change process intro-
duced by Guo, Jarrow and Zeng in the sense that each component of the market time is not required to be
a stopping time. We introduce a class of market times called idempotent market times that contain natural
examples including market times driven by Poisson processes. We show that any idempotent market time
is hard to be a model of the time change process. We define a filtration modulated by the market time
and show that it is an extension of the continuously delayed filtration that is the filtration modulated by
the time change process. We show that the conditional expectations given market filtrations have some
Markov property in a binomial setting, which is useful for pricing defaultable financial instruments.
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1 Introduction

Starting with the trailblazing work of Merton [Mer74], a branch of credit risk modeling, called the struc-
tural approach has flourished by several authors ( See e.g. Bielecki and Rutkowski [BR04] ,McNeil, Frey
and Embrechts [MFE05] or Bielecki, Jeanblanc and Marek Rutkowski [BJR09] ). Many of their models are
defined so as to introduce components that make the model incomplete in the sense that its default time
becomes a totally inaccessible stopping time.

The origin of this line is the work of Duffie and Lando [DL01]. They link the two perspectives by
introducing noise into the market’s information set. They postulate that the market can only observe the
firm’s asset value plus noise at equally spaced, discrete (non-continuous) time points. Kusuoka [Kus99]
extends Duffie and Lando’s model to continuous time observations. Nakagawa [Nak01] presents a filtering
model of a default time in a rigid mathematical setting. Çetin, Jarrow, Protter and Yildirim [cJPY04] simply
reduce the information the market can see instead of appending noise. Giesecke’s model [Gie06] makes the
default barrier be unobservable to the market.

Our approach that we present in this paper is toward the line. We focus on the market time delay as a
source of the model incompleteness. Actually, there are earlier studies including the work by Lindset, Lund
and Persson [LLP08] whose model has constant lags for both managers and markets, and more recently the
work by Guo, Jarrow and Zeng [GJZ09] whose model is stochastic and is based on an increasing sequence
of stopping times.

We enhance their approaches to the cases including not just deterministic delay but also some delay
driven by (possibly non-stopping) random times. This enables us to consider a natural example of catching
up to all information in a stochastically periodic manner that the continuous delayed model of Guo-Jarrow-
Zeng does not accept.

The remainder of this paper consists of three sections.

In Section 2, we begin with an introduction of market times, showing the set of all market times forms
a monoid. We introduce a family of market times, called idempotent market times whose member fails to
be an example of the time change utilized by Guo, Jarrow and Zeng [GJZ09]. We provide a characterization
of idempotent market times, We also give a couple of examples of market times in this section.

In Section 3, we present a definition of filtrations generated by market times, showing that they are
natural extension of the continuously delayed filtrations of Guo, Jarrow and Zeng [GJZ09] in the sense that
they coincide each other when the market time consists of stopping times.

In Section 4, we investigate behavior of market times in a binomial model. We show a conditional
expectation given a market filtration has a strong Markov property.

In Section 5, we provide a valuation of a defaultable bond and its credit spread based on the calculation
of a conditional expectation given a market filtration.
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2 Market Times

Let T be a fixed time domain that has the least element 0, equipped with an adequate topology, such as
{0, δ, 2δ, . . . , Nδ} (δ > 0), [0, T] or R+ := [0, ∞). For discrete domains, we assume that their topologies are
discrete, that is, the powersets of the domains. For subsets of R, their topologies consist of usual open sets.
We sometimes see the time domain as a measurable space whose σ-field are generated by its open sets.

Definition 2.1. Let T be a time domain.

1. For s, t ∈ T , [s, t]T := {u ∈ T | s ≤ u ≤ t}. Similarly, we define [s, t[T , ]s, t]T and ]s, t[T ,

2. T+ := T − {0},

3. For a function f whose domain is T , f (t−) := lims→t−0 f (s) and f (t+) := lims→t+0 f (s).

Note that in the case T = {nδ | n = 0, 1, . . . }, t− = t − δ for t ∈ T+ and t+ = t + δ for t ∈ T .

In this paper, all the discussion is under the filtered probability space (Ω,F , F = {Ft}t∈T , P), where
the filtration F satisfies the usual condition for continuous time domains.

2.1 The Space of Market Times

Definition 2.2. [Random Times]

A random time is a random variable τ whose codomain is T , that is, τ : Ω → T .

We denote the set of all random times by T ∗.

Definition 2.3. Let p = p(ω, t1, t2, . . . , tn) be a proposition on Ω × T n. Define predicates AS(p), SS(p),
IS(p) and CS(p) by

AS(p) :=
(
(∀t1 ∈ T )(∀t2 ∈ T ) . . . (∀tn ∈ T )P{ω ∈ Ω | p(ω, t1, t2, . . . , tn)} = 1

)
,

SS(p) :=
(
(∀τ1 ∈ T ∗)(∀τ2 ∈ T ∗) . . . (∀τn ∈ T ∗)P{ω ∈ Ω | p(ω, τ1(ω), τ2(ω), . . . , τn(ω))} = 1

)
,

IS(p) :=
(
P{ω ∈ Ω | (∀t1 ∈ T )(∀t2 ∈ T ) . . . (∀tn ∈ T )p(ω, t1, t2, . . . , tn)} = 1

)
,

CS(p) :=
(
(∀t1 ∈ T )(∀t2 ∈ T ) . . . (∀tn ∈ T )(∀ω ∈ Ω)p(ω, t1, t2, . . . , tn)

)
.

Theorem 2.4. Let p be a proposition on Ω × T n. Then, we have the following implications.

SS(p)
↗ ↘

CS(p) AS(p)
↘ ↗

IS(p)

Proof. Immediate.

Definition 2.5. Let X and Y be two stochastic processes.

1. Y is called a modification of X if AS(Xt(ω) = Yt(ω)),

2. Y is called a strong modification of X if SS(Xt(ω) = Yt(ω)).

3. X and Y are called indistinguishable if IS(Xt(ω) = Yt(ω)).
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In the following, we sometimes drop the occurrences of ω in arguments of predicate constructors like
SS(Xt = Yt) instead of writing SS(Xt(ω) = Yt(ω)).

Now we have a definition of the key concept of this paper.

Definition 2.6. [Market Times]

A raw market time is a stochastic process m : T × Ω → T satisfying the following conditions,

1. SS(m0 = 0),

2. SS(mt ≤ t),

3. SS(t1 ≤ t2 → mt1 ≤ mt2).

An F-market time is a raw market time which is F-adapted.

The market time mt represents the delayed time in the sense that if the market knows an event at time
t, then the event actually happened at time mt (ahead of t) when managers learned it. So, it models the
fact that the market will know the information (slightly) after the managers know it, that is, representing
asymmetric information.

Lindset et al. introduced the two time lags for markets and managers in [LLP08]. Their lags are constant
and not stochastically varying like ours.

Proposition 2.7. Let m be a raw market time and m′ be a strong modification of m. Then, m′ is a raw market time.

Proof. Straightforward.

Proposition 2.7 asserts that we can treat the space of market times as a quotient space safely.

Definition 2.8. [Space of Market Times]

1. M is the set of all raw market times.

2. For m1, m2 ∈ M, the composite process m1 ◦ m2 is defined by for t ∈ T and ω ∈ Ω,

(m1 ◦ m2)t(ω) = (m1 ◦ m2)(t, ω) := m1(m2(t, ω), ω).

3. M := M/ ∼, where ∼ is a binary relation on M defined by m1 ∼ m2 iff m1 is a strong modification
of m2 for any pair of m1 and m2 in M,

For m ∈ M, we write m ∈ M by identifying m with the equivalence class [m]∼ ∈ M if it leads no
confusion.

4. An identity process is a process 1M ∈ M defined by 1Mt (ω) = t for all t ∈ T and ω ∈ Ω.

Theorem 2.9. The structure ⟨M, ◦, 1M⟩ forms a monoid 1, where ◦ is a well-defined operator on M induced by the
operator ◦ on M.

Proof. First, we show that the process (m1 ◦ m2) is a market time, that is, the operation ◦ is well-defined and
the set M is closed under the operation ◦, by examining if it satisfies the three condition in Definition 2.6,
which is actually straightforward.

1A semigroup with identity.
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Next, we check the associativity of the operator ◦. Let m1, m2, m3 ∈ M. We have for any t ∈ T and
ω ∈ Ω,

((m1 ◦ m2) ◦ m3)t(ω) = m1
m2

m3
t (ω)

(ω)
(ω) = (m1 ◦ (m2 ◦ m3))t(ω).

The last thing we have to check is that 1M is an identity of the operator ◦. But, this is also straightfor-
ward.

2.2 Idempotent Market Times

Definition 2.10. [Idempotent Market Times] A raw market time m is called idempotent if

SS(mmt = mt), (1)

or m ◦ m is a strong modification of m.

Proposition 2.11. A raw market time m is idempotent iff SS(mt1 ≤ t2 ≤ t1 → mt1 = mt2).

Proof. If part. For τ ∈ T ∗, we have

{mτ ≤ τ} ∩ {mτ ≤ mτ ≤ τ → mτ = mmτ} ⊂ {mτ = mmτ}.

By the assumption, the probability of the left hand set is 1. Therefore, P{mτ = mmτ} = 1 as well.

Only if part. For any τ1, τ2 ∈ T ∗, define a set A by

A := {mmτ1
= mτ1} ∩ {mτ1 ≤ τ2 → mmτ1

≤ mτ2} ∩ {τ2 ≤ τ1 → mτ2 ≤ mτ1}.

Then, we have P(A) = 1 since m is an idempotent raw market time. Now, observing

A ∩ {mτ1 ≤ τ2 ≤ τ1}
=A ∩ {mτ1 ≤ τ2} ∩ {τ2 ≤ τ1}
⊂{mmτ1

= mτ1} ∩ {mmτ1
≤ mτ2} ∩ {mτ2 ≤ mτ1}

={mmτ1
= mτ1} ∩ {mmτ1

≤ mτ2 ≤ mτ1}
⊂{mτ1 = mτ2},

we have A ⊂ {mτ1 ≤ τ2 ≤ τ1 → mτ1 = mτ2}. Therefore, P{mτ1 ≤ τ2 ≤ τ1 → mτ1 = mτ2} = 1.

Here is one of the important implications derived from Proposition 2.11.

Corollary 2.12. Let m = {mt}t∈T be an idempotent F-market time where each mt is a F-stopping time. Then, for
every pair t and s in T with t ≥ s, we have {mt = ms} ∈ Fs.

Proof. Let A ⊂ Ω be the set defined by A := {mt ≤ s ≤ t → mt = ms} ∩ {ms ≤ s}. Then, since m is a
market time and by Proposition 2.11, we get P(A) = 1.

Now, under the assumption s ≤ t, we have

A ∩ {mt ≤ s} = A ∩ ({mt ≤ s ≤ t → mt = ms} ∩ {mt ≤ s}) ⊂ A ∩ {mt = ms}

and
A ∩ {mt = ms} = A ∩ ({ms ≤ s} ∩ {mt = ms}) ⊂ A ∩ {mt ≤ s}.

Thus A ∩ {mt ≤ s} = A ∩ {mt = ms}. Therefore {mt ≤ s}△{mt = ms} ⊂ Ω − A. Hence P({mt ≤
s}△{mt = ms}) = 0. Since {mt ≤ s} is Fs-measurable and Fs is complete, we have {mt = ms} ∈ Fs.

5



Let us think s and t to be the current time and any future time, respectively. Then by Corollary 2.12, we
can know if the information will have increased since now by any future time t, which is not realistic.

So, we should conclude that requiring each random time mt to be a stopping time is not practical in
the case that m is idempotent while some of the idempotent market times are quite interesting both in the
practical and the theoretical sense. This is our original motivation to develop a delayed theory that does
not depend on stopping times.

The following theorem gives an insight about the shape of idempotent market times.

Theorem 2.13. Let m : T × Ω → T be an idempotent raw market time. Then, we have

AS(mt = t ∨ mt = mt−).

Proof. For any t ∈ T , make a following calculation:

A := {mt ≤ t} ∩ {mmt = mt} ∩ {mt ≤ t− → mmt ≤ mt−} ∩ {t− ≤ t → mt− ≤ mt}
⊂ {mt ≤ t} ∩ {mt ≤ t− → mt ≤ mt−} ∩ {t− ≤ t → mt− ≤ mt}
= {mt ≤ t} ∩ {mt < t → mt ≤ mt−} ∩ {mt− ≤ mt}
= ({mt = t} ∪ {mt < t}) ∩ {mt < t → mt ≤ mt−} ∩ {mt− ≤ mt}
⊂ ({mt = t} ∩ {mt− ≤ mt}) ∪ ({mt ≤ mt−} ∩ {mt− ≤ mt})
⊂ {mt = t} ∪ {mt = mt−}
= {mt = t ∨ mt = mt−}.

Here, P(A) = 1 since m is an idempotent raw market time.

Therefore, we have P{mt = t ∨ mt = mt−} = 1.

Next, we show a characterization of idempotent market times.

Definition 2.14. 1. For a random set M ⊂ T × Ω, define a process mM : T × Ω → T by

mM
t (ω) = sup{s ≤ t | (s, ω) ∈ M}, (2)

where we use the convention sup ∅ = 0.

2. For a raw market time m, define a random set Mm by

Mm := {(t, ω) ∈ T × Ω | mt(ω) = t}. (3)

Note that mM
t is the end 2 of the random set Mt := M ∩ ([0, t]T × Ω).

Proposition 2.15. 1. Let M ⊂ T × Ω be a random set. Then, the process mM is an idempotent raw market time.

2. Let m be an idempotent raw market time, Then, the process mMm
is a strong modification of m.

Proof. 1. It is clear that mM is a raw market time. So, let us show it is also idempotent. Let ω ∈ Ω,
τ ∈ T ∗ and s := mM

τ (ω). Then,

s ≤ τ(ω) and (∀u ∈ T )u ≤ τ(ω) ∧ (u, ω) ∈ M → u ≤ s. (4)

Now, it is enough to show that {u ≤ s | (u, ω) ∈ M} = {u ≤ τ(ω) | (u, ω) ∈ M}. Since s ≤ τ(ω), it
is obvious that LHS ⊂ RHS. Let u ∈ RHS. Then by Equation ( 4), u ≤ s. Therefore, u ∈ LHS.

2See Definition 2.23.
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2. For ω ∈ Ω , s ∈ T and τ ∈ T ∗, We have

mMm

τ (ω) = sup{s ≤ τ(ω) | (s, ω) ∈ Mm} = sup{s ∈ T | s ≤ τ(ω) ∧ ms(ω) = s}. (5)

Then by Equation (5), we have {mτ ≤ τ} ∩ {mmτ = mτ} ⊂ {mMm
τ ≥ mτ}.

Here, the probability of the left hand set of the above equation is 1 since m is an idempotent market
time. Therefore, P{mMm

τ ≥ mτ} = 1.

On the other hand,

{mτ < s ≤ τ → mτ = ms} ∩ {s ≤ τ ∧ ms = s} ∩ {mτ < s}
={mτ < s ≤ τ → mτ = ms} ∩ {mτ < s ≤ τ} ∩ {mτ < s} ∩ {ms = s}
⊂{mτ = ms} ∩ {mτ < s} ∩ {ms = s}
⊂{ms < s} ∩ {ms = s} = ∅.

Therefore,

{mτ < s ≤ τ → mτ = ms} ⊂ {(s ≤ τ ∧ ms = s) → s ≤ mτ}
⊂ {mMm

τ ≤ mτ}. (6)

Here the last inclusion holds by Equation (5). The probability of the left most statement of Equation
(6) is 1 by Proposition 2.11. Therefore, P{mMm

τ ≤ mτ} = 1.

We have the following characterization theorem for idempotent raw market times.

Theorem 2.16. Let m : T × Ω → T be a process. Then, m is an idempotent raw market time iff there exists a
random set M ⊂ T × Ω such that mM is a strong modification of m.

Proof. Immediate from Proposition 2.15.

Proposition 2.17. Let M be an F-progressive set. Then, the process mM is an idempotent F-market time.

Proof. It is enough to show that mM is F-adapted. Since M is F-progressive, Mt = M ∩ ([0, t]T × Ω) is
B[0, t]⊗Ft-measurable. Then, since mM

t is the end of Mt, it is Ft-measurable.

Theorem 2.18. Let m : T × Ω → T be a càdlàg process. Then, m is an idempotent F-market time iff there exists an
F-optional set M ⊂ T × Ω such that mM is a strong modification of m.

Proof. If part. By Proposition 2.17 and the remark after Definition A.3.

Only if part. All we need to show is that the random set Mm defined by Equation (3) is F-optional when
m is F-adapted.

For n ∈ N, define processes pn by pn := 1{(t,ω)|mt(ω)≤t<mt(ω)+ 1
n }

. Then, pn is obviously F-adapted

and càdlàg. Therefore, (pn)−1(1) = {(t, ω) | mt(ω) ≤ t < mt(ω) + 1
n} is an F-optional set. Thus, so is

Mm =
∩

n∈N(pn)−1(1).

In the rest of this subsection, we only treat T = R+ cases.
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Theorem 2.19. Let m be an idempotent raw market time whose sample paths are càdlàg. Define a generalized function
Xt by

Xt := 1Im−Jm(t) + ∑
u∈Jm

(mu − mu−)δ(t − u) (7)

where Im and Jm are random sets defined by

Im(ω) := {t > 0 | mt(ω) = t} and Jm(ω) := ∂Im(ω) = {t ∈ Im(ω) | t− /∈ Im(ω)},

and δ is the Dirac delta function. Then, we have for every t ∈ R+,

AS
(
mt =

∫ t

0
Xsds

)
. (8)

Proof. By Theorem 2.13, we have mt ̸= t → mt − mt− = 0. So, we have almost surely,

mt = µ
(

Im∩]0, t]
)
+ ∑

u∈Jm∩]0,t]
(mu − mu−) (9)

where µ is the Lebesgue measure. Noting that Jm is a countable set, Equation (8) is a straightforward
consequence of Equation (9).

Equation (7) suggests that we can write the class of idempotent market times in Queuing theoretical
form like A/A/1, where A denotes the class of any positive random variables whose expectations are finite.

As the last topic of this subsection, we mention a family of market times called discretizors.

Definition 2.20. [Discretizors]

Let δ be a positive number. A discretizor with the resolution δ is a deterministic raw market time ∆δ =
{∆δ

t }t≥0 defined by
∆δ

t = nδ, where n ∈ N with nδ ≤ t < (n + 1)δ.

This is an idempotent raw market time catching up with the managers’ time every δ unit time. It also
satisfies t − δ < ∆δ

t ≤ t for every t ≥ 0.

Discretizors are sometimes used for making a given market time that has a continuous distribution be
its approximate market time with a discrete distribution. The following proposition gives a basic principle
of the approximation.

Proposition 2.21. Let m ∈ M, and t ≥ 0.

1. limδ→0 ∆δ
t = 1Mt .

2. (∆δ ◦ m)t → mt pointwise on Ω as δ → 0.

3. (m ◦∆δ)t → mt pointwise on Ω as δ → 0 if every sample path of the original market time mt is left-continuous.

Proof. 1. Immediate from the inequation t − δ < ∆δ
t ≤ t.

2. Immediate from the inequation mt(ω)− δ < ∆δ
mt(ω)

≤ mt(ω).

3. Noticing that ∆δ
t approaching to t from left, (m ◦ ∆δ)t converges to mt if mt is left-continuous.

Note that the cardinality of the range of the market time ∆δ ◦ m is at most countable.
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2.3 Honest Times

In Proposition 2.12, we were discouraged to make a market time consist of stopping times when it is idem-
potent.

In this subsection, we revisit the issue by adopting a wider class of random times than the class of
stopping times.

Definition 2.22. [Honest Times]

A random time τ is called F-honest with respect to a F-adapted process {τt}t∈T+ on T if for every
t ∈ T+, τ = τt on {τ ≤ t}, i.e. τ1{τ≤t} = τt1{τ≤t}. A random time τ is called F-honest if there exists a
F-adapted process {τt}t∈T+ such that τ is F-honest with respect to {τt}t∈T+ .

It is well known that every F-stopping time is F-honest (See e.g. page 373 of Protter [Pro04] or page
384 of Nikeghbali [Nik06] ).

Here is a also a well known characterization of honest times by optional processes.

Definition 2.23. Let A ⊂ T × Ω be a random set. The end of A is the random time EA defined by

EA(ω) := sup{t ∈ T | (t, ω) ∈ A}, (10)

where we use the convention sup ∅ = 0.

Theorem 2.24. [ [Pro04] Theorem VI.16] A random time τ is F-honest if and only if there exists an F-optional set
A such that τ = EA.

The following is a very nice characterization of honest times developed by Yor (Yor [Yor78]).

Theorem 2.25. [Yor [Yor78]] A random time τ is F-honest if and only if for every u ∈ [0, s[T ,

(∃A ∈ Fs){τ ≤ u} = A ∩ {τ ≤ s}. (11)

Our first question in this subsection is for a given market time m = {mt}t∈T , if there exists an honest
time τ with respect to m.

Here is a necessary and sufficient condition of the existence of such τ.

Proposition 2.26. Let m = {mt}t∈T be an F-market time. Then, a random time τ : Ω → T ∪ {∞} is F-honest
with respect to m if and only if for every ω ∈ Ω,

m∞(ω) := lim
t→∞

mt(ω) = τ(ω) = mτ(ω)(ω).

Proof. Note that the random time τ is F-honest with respect to m iff

(∀t ∈ T+)(∀ω ∈ Ω)
[
τ(ω) ≤ t → mt(ω) = τ(ω)

]
. (12)

Only if part: Since mt is monotonic, limt→∞ mt(ω) = supt∈T mt(ω). Therefore, the result comes imme-
diately by Equation (12).

If part: Since supt∈T mt(ω) = τ(ω),

(∀t ∈ T+)mt(ω) ≤ τ(ω).

So, it is sufficient to show mt(ω) ≥ τ(ω), assuming τ(ω) ≤ t. But, by the monotonicity of mt and the
assumption τ(ω) = mτ(ω)(ω), we have

τ(ω) = mτ(ω)(ω) ≤ mt(ω).

9



As an implication of Proposition 2.26, we missed the possibility of making whole market time be char-
acterized by one honest time if the market time is unbounded. However, we have the following fairly nice
theorem of asserting each mt becomes an honest time for some market times including Poisson market
times.

Theorem 2.27. If m = {mt}t∈T is an idempotent F-market time, then for every t ∈ T , mt is an F-honest time.

Proof. Define a random field {τt
s}t,s∈T by τt

s := mt∧s.

Then, it is obvious that τt
s is Fs-measurable. So, all we need to show is τt

s = mt on {mt ≤ s}.

If s ≥ t, we have τt
s = mt on Ω. Hence, we concentrate on the case s < t. Now for any ω ∈ {mt ≤ s},

mt(ω) ≤ s < t. Then, since m is idempotent, we get mt(ω) = mmt(ω)(ω) ≤ ms(ω) ≤ mt(ω). Therefore,
mt(ω) = ms(ω) = τt

s (ω).

Here is another characterization of honest times by using idempotent market times.

Theorem 2.28. A random time τ : Ω → T̄ is F-honest if and only if there exists an idempotent F-market time m
such that for every t ∈ T+, τ = mt on {τ ≤ t}, i.e. τ = m∞.

Proof. If part. Immediate by Definition 2.22.

Only if part. By Theorem 2.24, there exists an F-optional set M such that τ = EM since τ is F-honest.

Let m := mM. Then, by Theorem 2.18, m is an idempotent F-market time.

On the other hand, for ω ∈ {τ ≤ t}, we have

mt(ω) = sup{s ≤ t | (s, ω) ∈ M}
= sup{s ∈ T | (s, ω) ∈ M} since s ≤ τ(ω) ≤ t
= EM(ω).

Therefore, mt = EM = τ.

2.4 Examples of Market Times

We already see two sorts of concrete examples of market times, the identity market time and discretizors,
which are both idempotent market times.

In this subsection we show more examples including stochastic market times. Among them, renewal
market times and the starting times of Brownian excursions are idempotent market times. Therefore, they
have difficulty to work as the time change processes that Guo, Jarrow and Zeng use when they define
continuously delayed filtrations [GJZ09]. We will discuss the issue further in Section 2.4.2.

All examples are under T = R+ case.

2.4.1 Constantly Delayed Market Times

The following is an example of deterministic market times taken from Lindset et al. [LLP08].

Definition 2.29. [Constantly Delayed Market Time] Let d be a positive constant. A raw market time m =
{mt}t∈T is called a constantly delayed market time with delay d if for all t ∈ T ,

mt := max{t − d, 0}.

10



2.4.2 Renewal Market Times

The first example of the stochastic market times is the market time driven by independent identically dis-
tributed interval times, which, consequently, has multiple jumps.

Definition 2.30. [Renewal Market Time]

1. Xn ∼ i.i.d. random variables such that 0 < EP[Xn] < ∞ for n = 1, 2, . . . ,

2. Sn := ∑n
k=1 Xk,

3. Nt := sup{n | Sn ≤ t},

4. mt := SNt .

Intuitively, the random variable Xn specifies an interval time between n-th and n + 1-th jumps when
the market time catch up with the managers’ time. The process Nt is the renewal process generated by
those Xn’s.

The renewal market time can be seen as a stochastic version of a discretizor where its resolution time
changes statistically. It also can be written in Queuing theoretical form like G/0/1, where G stands for the
class of general iid random variables representing waiting times, 0 for 0-service time, and 1 for the number
of service channels.

You can easily verify that the renewal market time is an idempotent market time. This means that the
renewal market time fails to be an example of the time change process that Guo, Jarrow and Zeng use when
they define a continuously delayed filtration [GJZ09].

If the random variables Xn above obey an exponential distribution Exp(λ), this renewal market time is
called a Poisson market time whose Queuing theoretical representation is M/0/1.

In reality, we see the situations satisfying Equation (1) occasionally including when the firm is under
an audit activity by authorities, becoming all insider information available to the market.

Figure 1 shows a sample trajectory of a Poisson market time with λ = 10. We use this trajectory in
Section 5.

2.4.3 Periodically Filled Market Times

The next example of the stochastic market times is another stochastic version of discretizors in the sense
that its filled ratio against the managers’ time is determined in a stochastic manner.

Definition 2.31. [Periodically Filled Market Time] Let δ be a fixed positive number.

1. tn := nδ

2. m0 := 0, mtn := (1 − Un)mtn−1 + Untn where Un ∼ U[0, 1] is an independently distributed uniform
distribution.

2.4.4 Occupation Times

Here is a definition of occupation times taken from Example 6.2 in Chapter 3 of Karatzas and Shreve [KS98].

Definition 2.32. [Occupation Times]

11
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Figure 1: Poisson Market Time

Let W = {Wt}t∈T be a Brownian motion and B ∈ B(R) be a Borel set. Then we define the occupation
time of B by the Brownian path up to time t as

mt :=
∫ t

0
1B(Ws)ds.

Obviously, any occupation time m is a market time. However, the occupation time will not recover
to the managers’ time (that is, mt ̸= t) once it had a chance to walk out of the Borel set B. More precisely
speaking, the delay t−mt is increasing as time passes, and never shrinks. Therefore, the converse is untrue.

Similarly, for a given continuous semimartingale X = {Xt}t∈T , its local time L = {Lt}t∈T is a market
time.

2.4.5 Starting Times for Excursions

Let B = {Bt}t∈T be a standard Brownian motion, and define a random set Z by

Z = {(t, ω) ∈ R+ × Ω | Bt(ω) = 0}.

Then, the idempotent market time mZ picks the starting times for the excursions out of 0 of B.

3 Market Filtrations

Definition 3.1. [Market Filtrations] Let m = {mt}t∈T be an F-market time. The market filtration modulated
by the F-market time is the filtration Fm = {Fm

t }t∈T defined by for t ∈ T ,

Fm
t :=

∨
s∈[0,t]T

Fms . (13)
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In Definition 3.1, Fms is the σ-field defined in Definition A.4.

Theorem 3.2. Let m = {mt}t∈T be an F-market time. Then the market filtration Fm is a subfiltration of F.

Proof. It is obvious that Fm is a filtration. So all we need to show is that Fm
t ⊂ Ft for any t ∈ T . But for any

s ≤ t, since ms ≤ mt ≤ t, we have Fms ⊂ Ft by Theorem A.6. Therefore, Fm
t =

∨
s∈[0,t]T Fms ⊂ Ft.

The following theorem shows that our market filtration is a natural extension of the continuously de-
layed filtration of Guo, Jarrow and Zeng [GJZ09].

Theorem 3.3. Let m = {mt}t∈T be an F-market time where each mt is an F-stopping time. Then, Fm
t = Fmt .

Proof. Let s, t ∈ T with s ≤ t. Then ms ≤ mt.

First, we want to show Fms ⊂ Fmt . Let A ∈ Fms . Then, by Theorem A.7, for any u ∈ T , we have
A ∩ {ms ≤ u} ∈ Fu.

On the other hand, since ms ≤ mt, we have

A ∩ {mt ≤ u} = (A ∩ {ms ≤ u}) ∩ {mt ≤ u}

The first term of the right hand side belongs to Fu by the assumption, while the second term is also in Fu
since mt is an F-stopping time. So again by Theorem A.7, we get A ∈ Fmt .

Then, we have Fm
t =

∨
s∈[0,t]T Fms = Fmt .

Since a constant time is considered as a stopping time, we have the following corollary.

Corollary 3.4. Assume that an F-market time m is deterministic, i.e. there exists a deterministic function f : T → T
such that for all t ∈ T and ω ∈ Ω, mt(ω) = f (t). Then, we have for all t ∈ T , Fm

t = F f (t).

Next, we investigate the shape of market filtrations when the underlying market times are idempotent.

Lemma 3.5. Let m be an idempotent F-market time which is càdlàg. Then for every pair of s, t ∈ T with s < t, ms
is Fmt -measurable.

Proof. Let s ∈ T and B ∈ B(T ) be fixed. For any n ∈ N, define processes pn and qn : T × Ω → R by

pn := 1{(u,ω)∈T ×Ω|ms(ω)∈B, ms(ω)≤u<ms(ω)+ 1
n }

,

qn := 1{(u,ω)∈T ×Ω|ms(ω)∈B, u≥s+ 1
n }

.

Then, since ms is càdlàg, Fs-adapted and Fms -adapted by Proposition A.5, both pn and qn are F-adapted
and càdlàg. Therefore, Pn, Qn ∈ Fmt where

Pn :=
(

pn
mt

)−1
(1) = {ms ∈ B, ms ≤ mt < ms +

1
n
},

Qn :=
(
qn

mt

)−1
(1) = {ms ∈ B, mt ≥ s +

1
n
}.

Then, we have

P :=
∩

n∈N

Pn = {ms ∈ B, ms = mt} ∈ Fmt ,

Q :=
∪

n∈N

Qn = {ms ∈ B, mt > s} ∈ Fmt .
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Therefore
P ∪ Q = {ms ∈ B} ∩

(
{ms = mt} ∪ {mt > s}

)
∈ Fmt .

On the other hand, under the assumption s ≤ t, Proposition 2.11 implies that the two sets {mt ≤ s} and
{ms = mt} are identical by ignoring a null-measured difference. Hence

{ms ∈ B} ∩
(
{mt ≤ s} ∪ {mt > s}

)
= {ms ∈ B} ∈ Fmt .

Therefore, ms is Fmt -measurable.

Theorem 3.6. Let m be an idempotent F-market time which is càdlàg. Then, for every t ∈ T , we have Fm
t = Fmt .

Proof. Immediate by Lemma 3.5 and Theorem A.6.

4 Market Times in a Binomial Model

In this section, we investigate some behavior of idempotent market times in a concrete binomial model. We
will show a conditional expectation given a market filtration has a sort of strong Markov property.

4.1 The Setup

In this subsection, we define a binomial model.

Definition 4.1. [Time] Let δ be a given positive number.

1. T := {nδ | n = 0, 1, 2, . . . , N},

2. The horizon is the number T := Nδ,

3. For t ∈ T+, t− := t − δ,

4. For t ∈ [0, T[T , t+ := t + δ.

Definition 4.2. [Measurable Space] In the following, H, T and ⊥ are distinct constants.

1. Ω := {H,T}T+ .

For ω ∈ Ω, we expand its domain to T by defining ω(0) := ⊥,

2. For t ∈ T , the binary relation ∼t on Ω is defined by for ω, ω′ ∈ Ω,

ω ∼t ω′ ↔ (∀s ∈]0, t]T )ω(s) = ω′(s),

3. For t ∈ T , Ft := σ(Ω/ ∼t),

4. F := FT .

We sometimes see the set Ω as a topological space equipped with the discrete topology. In other words,
any subset of Ω is an open set.

Definition 4.3. [Probability] Let p ∈]0, 1[ be a given number.

1. P : Ω → [0, 1] is defined by for ω ∈ Ω, P(ω) := p#ω(1 − p)N−#ω where #ω is the cardinality of
ω−1(H),
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2. P : F → [0, 1] is defined by for A ∈ F , P(A) := ∑ω∈A P(ω).

Throughout the rest of this section, all discussions are under the filtered probability space (Ω,F , F =
(Ft)t∈T , P) defined in Definitions 4.1, 4.2 and 4.3. We also fix a state space (E, E) satisfying (∀x ∈ E){x} ∈
E . Note that both (R,B(R)) and (T , 2T ) satisfy this condition.

Theorem 4.4. A function X : Ω → E is Ft-measurable iff

(∀ω ∈ Ω)(∀ω′ ∈ Ω)ω ∼t ω′ → X(ω) = X(ω′).

Proof. Only if part. Let ω0 ∈ Ω and x0 := X(ω0). Then, we have ω0 ∈ X−1(x0) ∈ Ft since X is Ft-
measurable. On the other hand, by the definition of Ft we have [ω0]∼t . Therefore, for any ω ∈ Ω satisfying
ω ∼t ω0, we have ω ∈ [ω0]∼t ⊂ X−1(x0). Hence, X(ω) = x0 = X(ω0).

If part. It is enough to show that X−1(x) ∈ Ft for any x ∈ E. In case that X−1(x) = ∅, it is trivial. So
we can assume there exists ω ∈ Ω such that X(ω) = x. Then for every ω′ ∈ Ω with ω′ ∼t ω, we have
X(ω′) = X(ω) = x by the assumption. Hence, ω′ ∈ X−1(x). Therefore, [ω]∼t ⊂ X−1(x). Now since
X−1(x) is finite, we have X−1(x) =

∪
ω∈X−1(x)[ω]∼t ∈ Ft.

Corollary 4.5. A process Z : T × Ω → E is F-adapted iff

(∀t ∈ T )(∀ω ∈ Ω)(∀ω′ ∈ Ω)ω ∼t ω′ → Z(t, ω) = Z(t, ω′).

Definition 4.6. [The Universal Process]

1. Ω∗ := ∪t∈T {H,T}]0,t]T , where {H,T}∅ := {⊥}.

2. For ω ∈ Ω and t ∈ T , a function ω|t ∈ {H,T}]0,t]T is defined by ω|t := ω|]0,t]T whose domain is
expanded to [0, t]T by defining (ω|t)(0) := ⊥,

3. The universal process is a process π : T × Ω → Ω∗ defined by π(t, ω) := ω|t.

The following theorem shows that the universal process has a so-called universal property.

Theorem 4.7. Let Z : T × Ω → E be any F-adapted process.

1. There exists a unique function f : Ω∗ → E such that Z = f ◦ π,

2. For any t ∈ T , σ(Zt) ⊂ σ(πt).

Proof. 1. For ω0 ∈ {H,T}]0,t]T , define f (ω0) by f (ω0) := Z(t, ω) where ω ∈ Ω is the function defined
by

ω(s) :=

{
ω0(s) if s ∈]0, t]T ,
H otherwise.

Then, we have ( f ◦ π)(t, ω) = f (ω|t) = Z(t, ω′) where

ω′(s) :=

{
ω(s) if s ∈]0, t]T ,
H otherwise.

Since ω′ ∼t ω, we have Z(t, ω) = Z(t, ω′) by Corollary 4.5.
Next we show the uniqueness. Suppose there is another function f ′ : Ω∗ → E such that Z = f ′ ◦ π.
Then, for any ω ∈ Ω and t ∈ T , we have f ′(ω|t) = f (ω|t). Since all elements of Ω∗ can be represented
as ω|t for some ω ∈ Ω and t ∈ T , the rest is straightforward.

2. By 1, we have f : Ω∗ → E such that Z = f ◦ π. Then, for any A ∈ E ,

Z−1
t (A) = {ω ∈ Ω | Z(t, ω) ∈ A} = {ω ∈ Ω | π(t, ω) ∈ f−1(A)} ∈ σ(πt).
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4.2 Market Filtrations in a Binomial Model

In the rest of this section, we assume that m : T × Ω → T is an arbitrary but fixed idempotent F-market
time.

Proposition 4.8. OF = σ{{t} × [ω]∼t | t ∈ T , ω ∈ Ω}, where OF is the optional σ-field defined in Definition
A.3.

Proof. Since Ω is equipped with the discrete topology, any function whose domain is Ω is continuous.
Therefore,

OF := σ{Z | Z is an F-adapted càdlàg process. } = σ{Z | Z is an F-adapted process. }.

Then by Theorem 4.7 (2), we have OF = σ(π) since π itself is F-adapted.

Now remind that any element of Ω∗ can be represented as ω|t for ω ∈ Ω and t ∈ T+. Then, since

(∀ω ∈ Ω)(∀t ∈ T+)π−1(ω|t) = {t} × [ω]∼t ,

we have the desired equation.

Corollary 4.9. A process Z : T × Ω → E is F-optional iff it is F-adapted.

Proposition 4.10. Fm
t = σ(πmt).

Proof. By Theorem 3.6, Corollary 4.9 and Theorem 4.7 (2).

Now we investigate the shape of the set π−1
mt (x) for x ∈ Ω∗ in order to characterize Fm

t .

Definition 4.11. For a random time τ, a neighborhood of ω ∈ Ω at τ is the set Nτ(ω) := [ω]∼τ(ω).

Lemma 4.12. For ω, ω0 ∈ Ω, ω ∈ Nmt(ω0) implies mt(ω) ≥ mt(ω0).

Proof. Since m is F-adapted and ω ∼t ω0,

mmt(ω0)
(ω) = mmt(ω0)

(ω0) = mt(ω0).

The right most equality holds because m is idempotent. On the other hand, we have mt(ω0) ≤ t. Therefore,
mmt(ω0)

(ω) ≤ mt(ω).

Definition 4.13. Let τ be a random time, and ω0 ∈ Ω.

1. Kτ(ω0) := {ω ∈ Nτ(ω0) | τ(ω) > τ(ω0)},

2. Kτ(ω0) := {ω ∈ Kτ(ω0) | (∀ω′ ∈ Kτ(ω0))(Nτ(ω) ⊂ Nτ(ω′) → Nτ(ω) = Nτ(ω′))}.

Proposition 4.14. Let t ∈ T , ω0 ∈ Ω and x0 := πmt(ω0). Then,

π−1
mt (x0) = Nmt(ω0)−∪

{
Nmt(ω) | ω ∈ Kmt(ω0)

}
. (14)

Proof. Let ω ∈ π−1
mt (x0). Then, πmt(ω) = πmt(ω0). Thus, ω|mt(ω) = ω0|mt(ω0). Therefore, mt(ω) =

mt(ω0) and ω ∼mt(ω0)
ω0, which implies ω ∈ Nmt(ω0).

Now, we show that ω′ ∈ Kmt(ω0) implies ω /∈ Nmt(ω
′). Since ω′ ∈ Kmt(ω0), we have ω′ ∈ Nmt(ω0)

and mt(ω′) > mt(ω0). Suppose ω ∈ Nmt(ω
′). Then by Lemma 4.12, mt(ω) ≥ mt(ω′) > mt(ω0), which

contradicts to mt(ω) = mt(ω0). Therefore, we conclude ω /∈ Nmt(ω
′) and LHS ⊂ RHS.
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Next, we show the opposite inclusion. Let ω ∈ Nmt(ω0) − ∪
{

Nmt(ω) | ω ∈ Kmt(ω0)
}

. We want to
show ω ∈ π−1

mt (x0).

Since ω ∈ Nmt(ω0), we have mt(ω) ≥ mt(ω0) by Lemma 4.12. Suppose mt(ω) > mt(ω0). Then,
ω ∈ Kmt(ω0). We can pick ω′ ∈ Kmt(ω0) such that Nmt(ω

′) ⊃ Nmt(ω). Therefore, ω ∈ Nmt(ω) ⊂ Nmt(ω
′).

But this contradicts to the way of the selection of ω. Hence, we have mt(ω) = mt(ω0).

On the other hand, we have ω|mt(ω0) = ω0|mt(ω0) since ω ∈ Nmt(ω0). Therefore,

πmt(ω) = ω|mt(ω) = ω|mt(ω0) = ω0|mt(ω0) = πmt(ω0) = x0.

Corollary 4.15. Fm
t = σ{Nmt(ω) | ω ∈ Ω}.

4.3 Conditional Expectations Given a Market Filtration

We keep assuming that m is an idempotent F-market time throughout this subsection.

Theorem 4.16. Let Y be a random variable and X be an Fmt -measurable random variable. Then,

EP[Y | Fm
t ] = X iff (∀ω0 ∈ Ω)(EP[1Nmt (ω0)

Y] = EP[1Nmt (ω0)
X]).

Proof. The only-if part is trivial. So we assume the right hand side. Let

G := {A ∈ Fm
t |

∫
A

YdP =
∫

A
XdP}.

Then, all we need to show is G = Fm
t .

By the assumption, for any ω0 ∈ Ω, we have Nmt(ω0) ∈ G. Now seeing Equation (14) and noticing that
the following relations are satisfied for any ω1, ω2 ∈ Kmt(ω0),

1. Nmt(ω1) ⊂ Nmt(ω0),

2. Nmt(ω1) = Nmt(ω2) or Nmt(ω1) ∩ Nmt(ω2) = ∅,

we have the following equation where all unions are disjoint-sum:

Nmt(ω0) = π−1
mt (πmt(ω0)) ∪

(∪ {
Nmt(ω) | ω ∈ Kmt(ω0)

})
.

Therefore, by the assumption, we have

H := {π−1
mt (πmt(ω0)) | ω0 ∈ Ω} ⊂ G.

Again, the elements of H are disjoint each other, and obviously ∪H = Ω. So, any element of Fm
t = σ(πmt)

can be represented as a disjoint sum of the elements of H, which concludes Fm
t ⊂ G.

Now we specify a process Y and calculates its conditional expectation given the market filtration Fm
t .

Definition 4.17. [Process Y]

1. For t ∈ T+, a Bernoulli process X is defined by

Xt(ω) =

{√
δ if ω(t) = H

−
√

δ if ω(t) = T.
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2. For t ∈ T , a process M is defined by Mt(ω) := ∑s∈]0,t]T Xs(ω).

3. The process Y is defined by
Yt(ω) := y0 + νt + σMt(ω)

where y0, ν and σ ≥ 0 are constants.

Definition 4.18. Let f : R → R be a fixed function. Define a function g : T × R → R by

g(0, y) := f (y),

g(t+, y) := pg(t, y + νδ + σ
√

δ) + (1 − p)g(t, y + νδ − σ
√

δ).

Theorem 4.19. For any s ≥ t,
EP[ f (Ys) | Fm

t ] = g(s − mt, Ymt). (15)

Proof. By Theorem 4.16, since g(s − mt, Ymt) is Fm
t -measurable, all we need to show is

(∀ω0 ∈ Ω)(EP[1Nmt (ω0)
f (Ys)] = EP[1Nmt (ω0)

g(s − mt, Ymt)]).

Thinking about the shape of the set Nmt(ω0), we can prove it by showing

(∀C ∈ R)(EP[1Nmt (ω0)
f (Ymt+u + C)] = EP[1Nmt (ω0)

g(u, Ymt + C)]) (16)

by induction on u ∈ [0, s − mt]T .

When u = 0, it is trivial. Assume Equation (16) holds at u ∈ [0, s − mt[T . Then, we have

EP[1Nmt (ω0)
f (Ymt+u+ + C)]

=EP[EP[1Nmt (ω0)
f (Ymt+u+ + C) | Fmt+u]]

=EP[EP[1Nmt (ω0)
f (Ymt+u + νδ + σXmt+u+ + C) | Fmt+u]]

=EP[p1Nmt (ω0)
f (Ymt+u + νδ + σ

√
δ + C) + (1 − p)1Nmt (ω0)

f (Ymt+u + νδ − σ
√

δ + C)]

=pEP[1Nmt (ω0)
f (Ymt+u + (νδ + σ

√
δ + C))] + (1 − p)EP[1Nmt (ω0)

f (Ymt+u + (νδ − σ
√

δ + C))]

=pEP[1Nmt (ω0)
g(u, Ymt + (νδ + σ

√
δ + C)] + (1 − p)EP[1Nmt (ω0)

g(u, Ymt + (νδ − σ
√

δ + C)]

=EP[1Nmt (ω0)

(
pg(u, (Ymt + C) + νδ + σ

√
δ) + (1 − p)g(u, (Ymt + C) + νδ − σ

√
δ)
)
]

=EP[1Nmt (ω0)
g(u+, Ymt + C)].

Therefore, Equation (16) holds at u+ as well, which completes the proof.

Corollary 4.20. For any s ≥ t,
EP[ f (Ys) | Fm

t ] = EP[ f (Ys) | mt, Ymt ]. (17)

Note 4.21. Practically, Corollary 4.20 is enough to price defaultable securities under a market-time based
model since we can make it as accurate as possible by making δ smaller.

Suppose p = 1
2 . Then, as δ → 0, the process M converges to a standard Brownian motion in distribution

by the Central Limit Theorem, and the process Y will satisfy

Yt = y0 + νt + σBt. (18)

The function g defined in Definition 4.18 will be specified with an appropriate partial differential equation,
and Equation (17) may hold at this continuous case.

We will use this insight when we calculate a defaultable bond price in Section 5.2.
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5 Valuation of Defaultable Bonds

In this section, we apply the result of the theory of market times to a firm value process that is driven
by a geometric Brownian motion. We assume that the probability measure P is a risk-neutral probability
measure from now on. The notation in this subsection basically follows Example 3.1.1 of Bielecki and
Rutkowski [BR04]. In this section. we only treat T := R+ case.

5.1 The Setup

Assume that the firm value process V = {Vt}t∈T satisfies the equation

dVt = Vt
(
(r − κ)dt + σVdBt

)
(19)

where κ > 0 represents the payout ratio, σV > 0 is the constant volatility coefficient, and Bt is a standard
P-Brownian motion. The short term interest rate r is assumed to be non-random. Then, we have

Vt = V0 exp
(
(r − κ − 1

2
σ2

V)t + σV Bt
)
.

We define the default time τ of the firm by

τ := inf{t > 0 | Vt < L} (20)

where L is a constant liability with L < V0.

Now let
Yt := log

Vt

L
. (21)

Then, we have easily get the following equations

Yt = log
V0

L
+ (r − κ − 1

2
σ2

V)t + σV Bt, (22)

τ = inf{t > 0 | Yt < 0}. (23)

By defining the following constants

y0 := log
V0

L
, ν := r − κ − 1

2
σ2

V , σ := σV , (24)

we have
Yt = y0 + νt + σBt, (25)

Figure 2 shows the path of the firm value process V (manager’s view), using the same trajectory of
Poisson market time shown in Figure 1. It also shows the corresponding market view, i.e. Vmt ,

5.2 Zero-Coupon Bond

A defaultable zero-coupon bond with zero recovery pays one unit of account at maturity T if no default
happened and zero otherwise. Thinking the relation

τ > t ⇔ inf
u∈[0,t]

Vu > L ⇔ inf
u∈[0,t]

Yu > 0, (26)
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Figure 2: Firm Value Process

the bond price D(t, T) at time t < T is

D(t, T) = EP
[
e−(T−t)r1{τ>T} | Fm

t
]

= e−(T−t)rEP
[
1{infu∈[0,T] Vu>L} | Fmt

]
= e−(T−t)r1{infu∈[0,mt ]

Vu>L}EP
[
1{infu∈[mt ,T] Vu>L} | Fmt

]
= e−(T−t)r1{τ>mt}EP

[
1{infu∈[mt ,T] Yu>0} | Fmt

]
= e−(T−t)r1{τ>mt}EP

[
1{infu∈[mt ,T] Yu>0} | mt, Ymt

]
= e−(T−t)r1{τ>mt}P

(
inf

u∈[mt ,T]
Yu > 0 | mt, Ymt

)
= e−(T−t)r1{τ>mt}

[
Φ
(Ymt + ν(T − mt)

σ
√

T − mt

)
− e−2νYmt σ−2

Φ
(−Ymt + ν(T − mt)

σ
√

T − mt

)]
.

The last equality comes from Theorem A.8. We also use the insight acquired in Note 4.21, which was proved
for a discrete case.

On the other hand, a risk-free bond price that pays one unit of account at maturity T is

B(t, T) = e−(T−t)r.

Now, the credit spread S(t, T) of the bond is the yield over the risk-free short-rate. Therefore, it becomes on
{τ > mt},

S(t, T) = − 1
T − t

(
log D(t, T)− log B(t, T)

)
= − 1

T − t

[
Φ
(Ymt + ν(T − mt)

σ
√

T − mt

)
− e−2νYmt σ−2

Φ
(−Ymt + ν(T − mt)

σ
√

T − mt

)]
. (27)

In order to see a behaviour of the credit spread around the default event, let us see Figure 3. It shows
the credit spread S(t, 250) calculated by Equation (27). We can see the left-discontinuity at the default point
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Figure 3: Credit Spread of Defaultable Bond

(the red dot), which is consistent with the empirical observation.

A Appendix

This appendix consists of the known results that are necessary for the discussions in the main text.

A.1 Progressive and Optional Processes

Definition A.1. [Progressive Processes] A process X = {Xt}t∈T is called F-progressive if for every t ∈ T ,
X|[0,t]T ×Ω is B[0, t] ⊗ Ft-measurable. A random set is called F-progressive if its indicator function is F-
progressive.

Lemma A.2. [ [RW00] Lemma VI.3.3] Every right continuous F-adapted process is F-progressive.

Definition A.3. [Optional Processes] The optional σ-field with respect to F is the σ-field OF defined on T ×Ω
such that

OF := σ{X | X = {Xt}t∈T is an F-adapted càdlàg process. }. (28)

An element of OF is called an F-optional set. A process X = {Xt}t∈T is called F-optional if the map (t, ω) 7→
Xt(ω) is OF-measurable.

By Lemma A.2, every F-optional process is an F-progressive process, and every F-optional set is an
F-progressive set.

The following is one of the standard σ-fields generated by arbitrary random times. You can find it for
example in Definition 8.4 in Nikeghbali [Nik06].
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Definition A.4. Let τ be a random time. The σ-field Fτ is defined by

Fτ := σ{Zτ | Z = {Zt}t∈T is an F-optional process. }.

The σ-field Fτ consists of events which depend on what happens up to and including time τ.

Proposition A.5. Every random time τ is Fτ-measurable.

Proof. Let Z be a process defined by Z(t, ω) = t for all t ∈ T and ω ∈ Ω. Then Z is obviously optional and
Zτ = τ.

Theorem A.6. [ [DMM92] Théorème XX.27] Let τ1 and τ2 be two random times such that τ1 ≤ τ2. If τ1 is
Fτ2 -measurable, we have Fτ1 ⊂ Fτ2 .

Theorem A.7. [ [RW00] Lemma VI.17.5] If τ is an F-stopping time, then

Fτ =
{

A ∈ F∞ | (∀u ∈ T )A ∩ {τ ≤ u} ∈ Fu
}

. (29)

Especially, if there exists a constant t ∈ T such that for any ω ∈ Ω, τ(ω) = t, then Fτ = Ft.

A.2 Brownian Motion with a Drift

The following theorem is an indispensable tool for calculating default times in markets with complete
information.

Theorem A.8. [ [MR05] Corollary B.4.4] Let {Bt}t∈R+ be a standard F-Brownian motion, and Y = {Yt}t∈R+ be
a process satisfying the following equation

Yt = y0 + νt + σBt,

where y0 > 0, ν and σ > 0 are given constants. Then for y ∈ R, we have

P
(

inf
s∈[0,t]

Ys ≥ y
)
= Φ

(−y + y0 + νt
σ
√

t

)
− e2ν(y−y0)σ

−2
Φ
(y − y0 + νt

σ
√

t

)
where the function Φ is the c.d.f. of the standard normal distribution.
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