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Abstract

In this paper, we study risk premiums in higher order moments of financial
asset returns in a general equilibrium setting. Extending the model proposed by
Drechsler and Yaron[2011] with a stochastic jump intensity in the processes of
both the long-run risk factor and the variance of consumption growth rate, we
provide explicit representations for the variance and skewness risk premiums in
the equilibrium. Moreover, modeling the stochastic jump intensity endogeneously
and deriving a representation of the risk-neutral skewness with that intensity, we
propose a possible reason of the empirical fact of time-varying and negative risk-
neutral skewness. Finally, providing an equity risk premium representation of a
linear factor pricing model with the variance and skewness risk premiums, we show
an empirical evidence in which the skewness risk premium, as well as the variance
risk premium, has superior predictive power for future aggregate stock market
index returns.
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1 Introduction

The concern with the information content in option-implied distributions has been grow-

ing for the last several years. In particular, there has been a renewal of interest in the

information of the difference between option-implied and realized distributions, which is

usually recognized as a risk premium required by the representative agent, in terms of the

financial risk management or the asset pricing implications. This paper examines such

risk premiums in higher order moments of financial asset returns in a general equilibrium

setting. In particular, we provide an equity risk premium representation of a linear factor

pricing model with the risk premiums in higher order moments such as the variance and

skewness risk premiums in an equilibrium, and based on that representation the stock

return predictability is examined with the data of S＆P500 index returns. We document

the large and statistically significant predictive power of the skewness premium as well

as the variance risk premium for the stock index returns.

In recent years, there remains an ever-increasing interest and challenge to develop an

entirely self-contained equilibrium-based explanation for the nonzero variance risk pre-

mium and its predictability for stock index returns. To the best of our knowledge, the

first attempt to demonstrate the existence of the variance risk premium in an equilib-

rium market is made by Bansal and Yaron[2004]. They develop the long-run risks (LRR)

model which emphasizes the role of long-run risks, that is, low-frequency movements in

consumption growth rates and volatility, in accounting for a wide range of asset pricing

puzzles. The LRR model features an Epstein and Zin[1989] utility function with an in-

vestor preference for early resolution of uncertainty and contains (i) a persistent expected

consumption growth component and (ii) long-run variation in consumption volatility.

Based on the LRR model, Bansal and Yaron[2004] provide the equation for the equity

premium in which have two sources of systematic risk: the first relates to fluctuations in

expected consumption growth and the second to fluctuations in consumption volatility.

They show that the market compensation for stochastic volatility risk in consumption,

that is, the volatility risk premium, exists and appears explicitly in that equation for the

equity premium.

Motivated by the implications from Bansal and Yaron[2004], a stylized self-contained

general equilibrium model incorporating the effects of time-varying economic uncertainty,

Bollerslev, Tauchen, and Zhou[2009] show that the difference between implied and real-

ized variation, or the variance risk premium, is able to explain a nontrivial fraction of the

time-series variation in post-1990 aggregate stock market returns, with high (low) premia

predicting high (low) future returns. The magnitude of the predictability is particularly

strong at the intermediate quarterly return horizon, where it dominates that afforded

by other popular predictor variables, such as the P/E ratio, the default spread, and the

consumption-wealth ratio.
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Drechsler and Yaron[2011] also show the predictability of the variance risk premium

for stock index returns based on an equilibrium model with jumps in uncertainty and the

long-run component of cash-flows. They demonstrate that a risk aversion greater than

one and a preference for early resolution of uncertainty correctly signs the variance risk

premium and the coefficient from a predictive regression of returns on the variance risk

premium.

Whereas these studies cited above are essentially based on discrete-time models, sev-

eral studies such as Eraker[2008], Branger and Volkert[2010], and Bollerslev, et. al.[2012]

also provide an entirely self-contained equilibrium-based explanation for the nonzero vari-

ance risk premium based on continuous-time models.

All the above studies focus only on the variance risk premium required by a repre-

sentative investor due to the stochastic nature of asset return variance, and as far as we

know, there are few reports about the risk premium which compensates for uncertainty

of the third moment, that is, the skewness, of asset returns. In this paper, we demon-

strate that the skewness risk premium, defined as the difference between option-implied

and realized skewness, also captures attitudes toward economic uncertainty as well as

the variance risk premium. Among recent studies on self-contained equilibrium-based

models for the nonzero variance risk premium referred above, all the studies except for

Drechsler and Yaron[2011] model the processes of both the variance of consumption

growth rate and the LRR factor as conditional normal, so that the one-step-ahead con-

ditional distribution of the market return is also normal and, as a result, the skewness of

that distribution is zero. Therefore, those of models proposed by these studies can not

explain the negative risk-neutral skewness which is found by the previous studies such

as Aı̈t-Sahalia and Lo[1998] and Aı̈t-Sahalia, Wang, and Yared[2001]. They document

several empirical features of the state price density for the S＆ P500 index option mar-

ket over time, including the term structures of mean returns, volatility, skewness, and

kurtosis, that are implied by option-implied distributions. In particular, They show that

the nonparametric state price densities are negatively skewed, have fatter tails and the

amount of skewness and kurtosis both increase with maturity.

We show that jump components in the LRR factor and/or the variance of consump-

tion growth rate can explain the nonzero (or negative) skewness of the one-step-ahead

asset return distribution. To the best of our knowledge, Drechsler and Yaron[2011] is the

first paper that indicates an important role for transient non-Gaussian shocks (jumps)

to fundamentals such as the LRR-factor and the variance of consumption growth rate

for understanding how perceptions of economic uncertainty and cash-flow risk manifest

themselves in asset prices. However, the assumption of an affine structure on the jump

intensity process λt, that is, λt = l0 + l1σ
2
t where l0, l1 > 0 and σ2

t is the variance of

consumption growth rate, in Drechsler and Yaron[2011] can not explain an empirical

fact on a simultaneous relation between monthly stock returns and monthly changes of
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the option-implied skewness:

rm,t+1 = 0.006 − 0.019 ×4ISkewt+1

(2.46) (−3.46)

rm,t+1 = 0.006 − 0.007 ×4V IXt+1 − 0.016 ×4ISkewt+1

(3.33) (−16.00) (−3.94)

(1)

where rm,t+1 is the monthly return of the S＆ P500 Total Return Index from time t to

t + 1, 4V IXt+1 is the monthly change of implied volatility calculated with the CBOE’s

VIX from time t to t + 1, and 4ISkewt+1 is the monthly change of implied skew calcu-

lated with the CBOE’s Skew Index from time t to t + 1 and these results are obtained

based on the monthly data from Jan-1990 to Aug-2012. Under such assumption on the

jump intensity process in Drechsler and Yaron[2011], however, we can confirm that the

regression parameters to 4ISkewt+1 in the above regression models should be positive.

In this paper, we propose an extension of the LRR models of Bansal and Yaron[2004]

and Drechsler and Yaron[2011]. Our model contains a rich set of transient dynamics

and can quantitatively account for the time variation and asset return predictability of

the skewness premium as well as the variance risk premium. In particular, we introduce

a stochastic jump intensity structure for transient jumps to fundamentals such as the

LRR factor and the variance of consumption growth rate and show that this additional

introduction of a stochastic jump intensity model enables our model proposed in this

paper to capture the various empirical aspects of the stock index returns and its option

implied moments including the result of (1). Christoffersen, et.al.[2012] find very strong

support for time-varying jump intensities for S＆P500 index returns, and they show that,

compared to the risk premium on dynamic volatility, the risk premium on the dynamic

jump intensity has a much larger impact on option prices. We find that the existence of

the negative skewness and the skewness risk premium have a close relationship with the

existence of the jumps and the jump risk premium, respectively.

This paper also shows that the skewness of asset return distribution and the skewness

risk premium which compensates for the stochastic nature of the skewness are both time-

varying due to the stochastic nature of the jump intensity for transient jumps in the LRR

factor and the variance of consumption growth rate. Providing an equity risk premium

representation of a linear factor pricing model with time-varying variance and skewness

risk premiums, we find that these risk premiums can explain a nontrivial fraction of

the time series variation in the aggregate stock market returns and show an empirical

evidence in which the skewness risk premium, as well as the variance risk premium, has

superior predictive power for future aggregate stock market index returns.

The remainder of this paper is organized as follows. Section 2 outlines the basic

theoretical model with jumps in consumption growth rate and its volatility, shows how

the equilibrium is derived for our model economy, and highlights its key features. In
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particular, we provide an equity risk premium representation of a linear factor pricing

model with time-varying variance and skewness risk premiums. Section 3 provides the

implications from a calibrated version of the theoretical equity risk premium represen-

tation of a linear factor pricing model derived in Section 2 to help guide and interpret

our subsequent empirical reduced form predictability regressions. Section 4 describes the

data used for examining that equity risk premium representation empirically and dis-

cusses the results from the predictive regressions on the stock returns to the variance and

the skewness risk premiums with historical data. Section 5 provides concluding remarks.

2 Model Framework

2.1 Model Setup and Assumptions

The underlying environment is a discrete time endowment economy. The representative

agent’s preferences on the consumption stream are of the Epstein and Zin[1989] form,

allowing for the separation of risk aversion and the intertemporal elasticity of substitution

(IES). Thus, the agent maximizes his lifetime utility, which is defined recursively as

Vt =
[
(1 − δ)C

1−γ
θ

t + δ
(
Et[V

1−γ
t+1 ]

) 1
θ
] θ

1−γ
, (2)

where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preference, γ is the

coefficient of risk aversion, θ = 1−γ

1− 1
ψ

, and ψ is the intertemporal elasticity of substitution

(IES). This preference structure collapses to a standard CRRA utility representation if

γ = 1
ψ
, that is, θ = 1, and in this case, only innovations to consumption are priced. In

the following, based on the result provided by Bansal and Yaron[2004] we assume that

both γ and ψ are larger than one. It then holds that γ > 1
ψ
, which implies θ < 0.

With this choice, the investor has a preference for early resolution of uncertainty. Then,

not only consumption risk is priced, but state variables carry risk premia, too. The

parameter restrictions also ensure that the signs of the risk premia are in line with

economic intuition, and that a worsening of economic conditions leads to a decrease in

asset prices.

Utility maximization is subject to the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent and Rc,t is the return on all invested wealth. As shown

in Epstein and Zin[1989], for any asset j, the first-order condition yields the following

Euler condition:

Et

[
exp(mt+1 + rj,t+1)

]
= 1, (3)
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where rj,t+1 is the log of the gross return on asset j and mt+1 is the log of the intertemporal

marginal rate of substitution (IMRS), which is given by mt+1 = θ log δ − θ
ψ
4 ct+1 + (θ−

1)rc,t+1. Here, rc,t+1 is log Rc,t+1 and 4ct+1 is the change in log Ct, that is, log
(

Ct+1

Ct

)
.

We model consumption and dividend growth rates, gt+1 ≡ log(Ct+1

Ct
) and gd,t+1 ≡

log(Dt+1

Dt
) where Dt is dividend at time t, respectively, as containing a small persistent

predictable component xt, which determines the conditional expectation of consumption

growth,

xt+1 = ρxxt + ϕeσtet+1 + Jx,t+1,

gt+1 = µg + xt + ϕησtηt+1,

gd,t+1 = µd + ρdxt + ϕζσtζt+1,

(4)

where ϕe, ϕη, ϕξ, ρx, ρd > 0, µg, µd ∈ R, et, ηt, and ξt are mutually independent i.i.d.N(0, 1)

processes, and Jx,t+1 is a compound-Poisson process represented by Jx,t+1 ≡
∑Nx

t+1

j=1 εj
x

where Nx
t+1 is the Poisson counting process for that jump component whose the intensity

process is given by λx,t+1 ≡ lxλt+1, lx > 0, and εj
x ∼ i.i.d. N(0, δ2

x), δx > 0, is the size of

the jump that occurs upon the Nx
t+1.

Furthermore, we also model the dynamics of the volatility as follows:

σ2
t+1 = µσ + ρσσ

2
t +

√
qtwt+1 + Jσ2,t+1,

qt+1 = µq + ρqqt + ϕξ
√

qtξt+1,
(5)

where the parameters satisfy µσ > 0, µq > 0, |ρσ| < 1, |ρq| < 1, ϕξ > 0, and wt

and ξt are mutually independent i.i.d.N(0, 1) processes and are independent of each of

et, ηt, and ξt. Jσ2,t+1 is a compound-Poisson process, which is represented by Jσ2,t+1 ≡∑Nσ2

t+1

j=1 εj
σ2 where Nσ2

t+1 is the Poisson counting process for that jump component whose

the intensity process is given by λσ2,t+1 ≡ lσ2λt+1, lσ2 > 0, and εj
σ2 ∼ i.i.d. N(0, δ2

σ2),

δσ2 > 0, is the size of the jump that occurs upon the Nσ2

t+1. We assume that Nx
t+1

and Nσ2

t+1 are mutually independent and εj
x and εj

σ2 are too. The stochastic volatility

process σ2
t represents time-varying economic uncertainty in consumption growth with

the variance-of-variance process qt in effect inducing an additional source of temporal

variation in that same process. We also model the variance-of-variance process qt in the

same fashion as Bollerslev, et. al.[2009].

Importantly, we assume that the jump intensity dynamics in the economy is governed

by the following discrete-time stochastic process,

λt+1 = µλ + ρλλt + ϕu
√

qt(ρξt+1 +
√

1 − ρ2ut+1), (6)

where µλ > 0, |ρλ| < 1, |ρ| ≤ 1, and ut is an i.i.d.N(0, 1) process, which is independent

of each of et, ηt, ξt, wt, and ξt.
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One of the notable features of our model setup is this introduction for the jump

intensity process (6). Christoffersen, et.al.[2012] also find very strong support for time-

varying jump intensities for S＆ P500 index returns, and they show that, compared to

the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity

has a much larger impact on option prices. In the area of studying on the risk premiums

in higher-order moments of financial asset returns in equilibrium, although Drechsler and

Yaron[2011] is the first paper that introduces transient jumps to fundamentals such as the

LRR-factor xt and the variance of consumption growth rate σ2
t , however, it assumes that

the jump intensity process λt is represented by an affine structure such as λt = l0 + l1σ
2
t

where l0, l1 > 0. As mentioned in the introduction of this paper, such assumption for the

jump intensity process can not explain the empirical fact of regression (1). We extend

the LRR models of Bansal and Yaron[2004] and Drechsler and Yaron[2011] so as to

introduce a stochastic jump intensity of (6) into the economy. As shown in the following,

this introduction enables our model to have a consistency with the empirical fact shown

in (1).

2.2 The Model Solution in Equilibrium

We distinguish between the unobservable return on a claim to aggregate consumption,

Rc,t+1, and the observable return on the market portfolio, Rm,t+1: the latter is the

return on the aggregate dividend claim. Solving our model numerically, we demonstrate

the mechanisms working in our model via approximate analytical solutions in the same

fashion as the previous studies such as Bansal and Yaron[2004], Bollerslev, et.al.[2009],

Drechsler and Yaron[2011], etc. To derive these solutions for our model, we use the

standard approximation utilized in Campbell and Shiller (1988),

rc,t+1 = κ0 + κ1vt+1 − vt + gt+1, (7)

where lowercase letters refer to logs, so that rc,t+1 = log(Rc,t+1) is the continuous return,

vt = log(Pt

Ct
) is the log price-consumption ratio of the asset that pays the consumption

endowment, {Ct+i}∞i=1, and κ0 and κ1 are approximating constants that both depend

only on the average level of v 1. Analogously, rm,t+l and vm,t+1 correspond to the market

return and its log price-dividend ratio and the similar approximation presented below

can also be derived:

rm,t+1 = κ0,m + κ1,mvm,t+1 − vm,t + gd,t+1. (8)

The standard solution method for finding the equilibrium in a model like the one

defined above then consists in conjecturing solutions for vt and vm,t as an affine function

1Note that κ1 = exp(v̄)
1+exp(v̄) and κ1 is approximately 0.997 (cf) Bansal and Yaron[2004]), which is also

consistent with magnitudes used in Campbell and Shiller[1988].
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of the state variables, xt, σ2
t , qt, and λt,

vt = A0 + Axxt + Aσσ
2
t + Aqqt + Aλλt, (9)

vm,t = A0,m + Ax,mxt + Aσ,mσ2
t + Aq,mqt + Aλ,mλt, (10)

respectively, solving for the coefficients A0, Ax, Aσ, Aq, and Aλ in vt and for the coeffi-

cients A0,m, Ax,m, Aσ,m, Aq,m, and Aλ,m in vm,t.

Substituting (9) for (7), we have a temporal representation for rc,t+1 with the state

variables, xt, σ2
t , qt, and λt, and furthermore, substituting this rc,t+1 for the Euler equa-

tion (3), we can derive an identity in terms of those of the state variables. Solving that

identity in the same manner as Bansal and Yaron[2004], Bollerslev, et.al.[2009], Drechsler

and Yaron[2011], etc., we can derive the equilibrium solutions for the four parameters as

follows:

Ax =
γ − 1

θ(κ1ρx − 1)

Aσ = −1

2

(1 − γ)2ϕ2
η + θ2κ2

1A
2
xϕ

2
e

θ(κ1ρσ − 1)

Aλ =
2 − exp(1

2
θ2κ2

1A
2
xδ

2
x) − exp(1

2
θ2κ2

1A
2
σδ

2
σ)

θ(κ1ρλ − 1)

Aq is a solution of the quadratic equation presented below:

θAq(κ1ρq − 1) +
θ2κ2

1

2

[
A2

σ + A2
qϕ

2
ξ + 2AqAλϕξϕuρ + A2

λϕ
2
u

]
= 0

(11)

The following proposition can be easily proved by the expressions of (11):

Proposition 1 If γ > 1 and ψ > 1, then, Ax > 0, Aσ < 0, Aq < 0, and Aλ < 0.

The above proposition suggests that if the IES and risk aversion are higher than 1, then

a rise in each of the state variables of γ2
t , qt, and λt lowers the price-consumption ratio.

Having solved for rc,t+1 with the four parameters derived above, we can substitute it

(and 4ct+1 = gt+1) into mt+1 to obtain an expression for the conditional innovation to

the log pricing kernel at time t + 1:

mt+1 − Et[mt+1]

= θ log δ − θ

ψ
4 ct+1 + (θ − 1)rc,t+1 − Et

[
θ log δ − θ

ψ
4 ct+1 + (θ − 1)rc,t+1

]
=

(
− θ

ψ
+ θ − 1

)
ϕησtηt+1 + (θ − 1)κ1Axϕeσtet+1 + (θ − 1)κ1Aσ

√
qtwt+1

+ (θ − 1)κ1(Aqϕξ + Aλϕuρ)
√

qtξt+1 + (θ − 1)κ1Aλϕu

√
1 − ρ2

√
qtut+1

+ (θ − 1)κ1Ax(Jx,t+1 − Et[Jx,t+1]) + (θ − 1)κ1Aσ(Jσ2,t+1 − Et[Jσ2,t+1])

= −Λt(Gtzt+1 + Jt+1 − Et[Jt+1]),

(12)

8



where

Λ ≡
(
γ (1 − θ)κ1Ax (1 − θ)κ1Aσ (1 − θ)κ1Aq (1 − θ)κ1Aλ 0

)t

Gt ≡



ϕησt 0 0 0 0 0

0 ϕeσt 0 0 0 0

0 0
√

qt 0 0 0

0 0 0 ϕξ
√

qt 0 0

0 0 0 ρϕu
√

qt ϕu

√
1 − ρ2

√
qt 0

0 0 0 0 0 ϕζσt


,

zt+1 ≡
(
ηt+1 et+1 wt+1 ξt+1 ut+1 ζt+1

)t

,

Jt+1 ≡
(
0 Jx,t+1 Jσ2,t+1 0 0 0

)t

,

Et[Jt+1] ≡
(
0 Et[Jx,t+1] Et[Jσ2,t+1] 0 0 0

)t

.

(13)

Thus, Λ can be interpreted as the price of risk for Gaussian shocks and also the sensitivity

of the IMRS to the jump shocks. From the expression for Λ, one can see that the prices

of risk are determined by the A coefficients, that is, Ax, Aσ, Aq, and Aλ. The expression

for Λ also shows that the signs of the risk prices depend on the signs of the A coefficients

and (1 − θ). In particular, when γ = 1
ψ
, θ = 1, and we are in the case of constant

relative risk aversion (CRRA) preferences, it is clear that only the transient shock to

consumption zc,t+1 is priced, and prices do not separately reflect the risk of shocks to xt

(long-run risk), σ2
t (volatility-related risk), qt (variance-of-variance-related risk), and λt

(jump intensity-related risk).

In the discussion and calibrations explored below, we especially focus on the case in

which the agent’s risk aversion γ and the IES ψ are both greater than 1, which implies

that Ax > 0, Aσ < 0, Aq < 0, and Aλ < 0 by the proposition presented above. Thus,

positive shocks to long-run growth decrease the IMRS, while positive shocks to the levels

of the other state variables, σ2
t , qt, and λt, increase the IMRS. Note that in this case,

since (1− θ) > 0, each of the A coefficients has the same sign as the corresponding price

of risk.

To study the risk premium in the moments of the market returns, we first need

to solve for the market return. A share in the market is modeled as a claim to a

dividend with growth process given by gd,t. To solve for the price of a market share,

we proceed along the same lines as for the consumption claim and solve for vm,t+1, the

log price-dividend ratio of the market, by using the the conjecture (10), Campbell and

Shiller[1988]-approximation (8), and the Euler equation (3) 2 .
2Because the datails of the four parameters, Ax,m, Aσm , Aq,m, and Aλ,m, are insignificant and do

not affect the discussion explored in the following at all, for simplicity, we express the parameters, Ax,m,
Aσm , Aq,m, and Aλ,m, as they are and do not show explicit representations of those parameters in this
paper.
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With the equilibrium solutions for the parameters of Ax,m, Aσ,m, Aq,m, and Aλ,m

in (10), we can obtain an expression for rm,t+1 in terms of the state variables and its

innovations (by substituting the expression for vm,t(+1) into (8)):

rm,t+1 = κ0,m + κ1,mA0,m + κ1,mAσ,mµd + κ1,mAq,mµg + κ1,mAλ,mµλ − A0,m + µd

+ (κ1,mAx,mρx − Ax,m + ρd)xt

+ (κ1,mAσ,mρσ − Aσ,m)σt
2

+ (κ1,mAq,mρq − Aq,m)qt

+ (κ1,mAλ,mρλ − Aλ,m)λt

+ κ1,mAx,mϕeσtet+1 + κ1,mAσ,m
√

qtwt+1

+ κ1,m(Aq,mϕξ + Aλ,mϕuρ)
√

qtξt+1

+ κ1,mAλ,mϕu

√
1 − ρ2

√
qtut+1 + ϕζσtζt+1

+ κ1,mAx,mJx,t+1 + κ1,mAσ,mJσ2,t+1

= r0+(Bt
rF − At

m)Yt + Bt
rGtzt+1 + Bt

rJt+1,

(14)

where

r0 ≡ κ0,m + (κ1,m − 1)A0,m + (κ1,mAσ,m + 1)µd + κ1,mAq,mµg + κ1,mAλ,mµλ,

Br ≡ κ1,mAm + ed ,

Am ≡



0

Ax,m

Aσ,m

Aq,m

Aλ,m

0


, ed ≡



0

0

0

0

0

1


, F ≡



0 1 0 0 0 0

0 ρx 0 0 0 0

0 0 ρσ 0 0 0

0 0 0 ρq 0 0

0 0 0 0 ρλ 0

0 ρd 0 0 0 0


, Yt ≡



gt

xt

σt
2

qt

λt

gd,t


.

(15)

2.3 Risk Premiums in Higher-Order Moments in Equilibrium

Before proceeding to investigating the risk premiums in higher-order moments in equilib-

rium, we need to add some further explanation on the jump dynamics and the features

of the pricing kernel introduced above.

To handle the jumps, we introduce some notation. Let ψk(uk) = E[exp(ukεk)], k = x

or σ2 (i.e., ψk is the moment-generating function (mgf) of the jump size εk). The mgf for

the jump component of k, E[exp(ukJk,t+1)], then equals exp(Ψt,k(uk)), where Ψt,k(uk) =

λk,t(ψk(uk) − 1). Ψt,k is called the cumulant-generating function (cgf) of Jk,t+1 and is

a very helpful tool for calculating asset pricing moments. The reason is that its n-th

derivative evaluated at 0 equals the n-th central moment of Jk,t+1.

Regarding the features of the pricing kernel, we can show what described below in line

with Drechsler and Yaron[2011]. Let us set the Radon-Nikodym derivative dQ
dP = Mt+1

Et[Mt+1]
,

where P is the physical probability measure and Q is the risk-neutral probability measure

10



in our economy. From (12), we have Mt+1

Et[Mt+1]
∝ exp(−Λt(Gtzt+1 + Jt+1)). Since zt+1 and

Jt+1 are independent, we can treat their measure transformations between P and Q
separately. As a consequence, Drechsler and Yaron[2011] show that

zt+1
Q∼ N(−G

′

tΛ, I), (16)

where I is the identity matrix in R6×6. That is to say that, under Q, zt+1 is still a vector

of independent normals with unit variances, but with a shift in the mean.

For the case of Jt+1, we could also proceed by transforming the probability density

function directly. As guided in Drechsler and Yaron[2011], Proposition (9.6) in Cont and

Tankov[2004] shows that under Q, the Jt+1,k are still compound Poisson processes, but

with cgf given by

ΨQ
t,k(uk) = λk,tψk(−Λk)

(ψk(uk − Λk)

ψk(−Λk)
− 1

)
, (17)

where k = x or k = σ2 and Λx denotes the price of risk for the LRR-factor xt, that is,

(1 − θ)κ1Ax, and Λσ2 denotes the price of risk for the variance of consumption growth

rate, that is, (1 − θ)κ1Aσ. (See (13)) In the following discussion, we use the stylized

facts mentioned above to calculate the higher-order moments of the market returns and

to investigate the risk premiums in those of moments.

2.3.1 The Variance Risk Premium in Equilibrium

According to Bollerslev, et.al.[2009] and Drechsler and Yaron[2011], the variance risk

premium in equilibrium, vpt, is defined by

vpt ≡ EQ
t [VarQ

t+1(rm,t+2)] − EP
t [VarP

t+1(rm,t+2)], (18)

where V arP
t+1 (V arQ

t+1) is the variance operator under the physical (risk-neutral) proba-

bility measure. From (14), the conditional variance of the market return rm,t+2 on time

t + 1 under P can be obtained easily as follows:

VarP
t+1(rm,t+2) = Bt

rGt+1G
t
t+1Br +

∑
i

B2
r (i)VarP

t+1(Ji,t+2)

= Bt
rGt+1G

t
t+1Br + B2

r
t
Ψ

(2)
t+1(0),

(19)

where

Br = κ1,mAm + ed (∵ (15))

≡
(
Br(1) Br(2) Br(3) Br(4) Br(5) Br(6)

)t

∈ R6,

B2
r ≡

(
B2

r (1) B2
r (2) B2

r (3) B2
r (4) B2

r (5) B2
r (6)

)t

∈ R6,

Ψ
(2)
t+1(0) ≡

(
0 Ψ

(2)
t+1,x(0) Ψ

(2)

t+1,σ2(0) 0 0 0
)t

∈ R6,

11



and Ψ
(2)
t+1,x(0) and Ψ

(2)

t+1,σ2(0) are respectively the second derivative of the cgf (cumulant-

generating function) for Jx,t+1 and Jσ2,t+1 evaluated at 0, that is,

Ψ
(2)
t+1,x(0) ≡ ∂2

∂u2
Ψt+1,x(u) |u=0=

∂2

∂u2
λx,t+1(ψx(u) − 1) |u=0,

Ψ
(2)
t+1,σ(0) ≡ ∂2

∂u2
Ψt+1,σ2(u) |u=0=

∂2

∂u2
λσ2,t+1(ψσ2(u) − 1) |u=0 .

Thus the expression of (19) is rearranged to the following representation,

VarP
t+1(rm,t+2) = Bt

rGt+1G
t
t+1Br + B2

r
t
Ψ

(2)
t+1(0)

= Bt
r(Hσ2σ2

t+1 + Hqqt+1)Br + B2
r

t
diag

(
ψ(2)(0)

)
Πt+1,

(20)

where

Hσ2 ≡



ϕ2
η 0 0 0 0 0

0 ϕ2
e 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ϕ2
ζ


, Hq ≡



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 ϕ2
ξ ρϕξϕu 0

0 0 0 ρϕξϕu ϕ2
u 0

0 0 0 0 0 0


,

diag
(
ψ(2)(0)

)
≡



0 0 0 0 0 0

0 ψ
(2)
x (0) 0 0 0 0

0 0 ψ
(2)

σ2 (0) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Πt+1 ≡



0

λx,t+1

λσ2,t+1

0

0

0


.

Under the risk-neutral probability measure Q, the conditional variance of the market

return rm,t+2 on time t + 1 also can be obtained in the same manner demonstrated

above. As a consequence, we can show the following proposition with the definition of

the variance risk premium (18).

Proposition 2 (The Variance Risk Premium in Equilibrium) In equilibrium, the

variance risk premium at time t, vpt, is linear to the variance-of-variance, qt, and the

jump intensity, λt, and the explicit representation of it is provided as follows:

vpt = βvp,c + βvp,qqt + βvp,λλt,

where

βvp,c ≡
[
lxB

2
r (2)(ψ(2)

x (−Λx) − ψ(2)
x (0)) + lσ2B2

r (3)(ψ
(2)

σ2 (−Λσ2) − ψ
(2)

σ2 (0))
]
µλ,

βvp,q ≡ −Bt
r

[
Λσ2Hσ2 + ϕξ(ϕξΛq + ρϕuΛλ)Hq

]
Br

− ϕu(ρϕξΛq + ϕuΛλ)(lxB
2
r (2)ψ(2)

x (−Λx) + lσ2B2
r (3)ψ

(2)

σ2 (−Λσ2)),

βvp,λ ≡ Bt
rHσ2Brψ

(1)

σ2 (−Λσ2)

+
[
lxB

2
r (2)(ψ(2)

x (−Λx) − ψ(2)
x (0)) + lσ2B2

r (3)(ψ
(2)

σ2 (−Λσ2) − ψ
(2)

σ2 (0))
]
ρλ.

(21)

12



Proof See the Appendix.

A number of interesting implications arise from the expression (21). In particular,

any temporal variation in the endogenously generated variance risk premium is solely

due to the variance-of-variance qt and the jump intensity λt. Moreover, provided that

θ < 0, Λx > 0, and Λσ2 < 0, as would be implied by γ > 1 and ψ > 1, the factor

loading to the jump intensity, that is, βvp,λ, is guaranteed to be positive, but that to

the variance-of-variance, that is, βvp,q, can be both positive and negative in general.

However, if the correlation between the dynamics of the variance-of-variance and that of

the jump intensity, that is , ρ, is posituve, then βvp,q is also guaranteed to be positive

due to the facts that Λq < 0 and Λλ < 0.

2.3.2 The Skewness Risk Premium in Equilibrium

Based on the same manner used to derive the expression (20) in the previous subsection,

we can also derive the explicit representations for the skewness of the market returns

under P and Q, respectively:

SkewP
t (rm,t+1) = B3

r
t
diag(ψ(3)(0))Πt,

SkewQ
t (rm,t+1) = B3

r
t
diag(ψ(3)(−Λ))Πt,

(22)

where

B3
r ≡

(
B3

r (1) B3
r (2) B3

r (3) B3
r (4) B3

r (5) B3
r (6)

)t

,

diag
(
ψ(3)(0)

)
≡



0 0 0 0 0 0

0 ψ
(3)
x (0) 0 0 0 0

0 0 ψ
(3)

σ2 (0) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

diag
(
ψ(3)(−Λ)

)
≡



0 0 0 0 0 0

0 ψ
(3)
x (−Λx) 0 0 0 0

0 0 ψ
(3)

σ2 (−Λσ2) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

In this paper, we define the skewness risk premium in equilibrium at time t, skpt, as the

following expression:

skpt ≡ EQ
t [SkewQ

t+1(rm,t+2)] − EP
t [SkewP

t+1(rm,t+2)]. (23)

13



Substituting (22) into (23), the explicit representation for the skewness risk premium

can be obtained as the following:

skpt ≡ B3
r

t
diag(ψ(3)(−Λ))EQ

t [Πt+1] − B3
r

t
diag(ψ(3)(0))EP

t [Πt+1]. (24)

We also find a number of interesting implications from the expressions of (22) and

(24). First, in the case that there is no jump to fundamentals in the economy, that

is, in the case of Πt ≡ 0 (∈ R6), it is clear that the skewness of the market returns

should be zero due to (22). Thus, the existence of the nonzero skewness of the market

returns crucially depend on the existence of the jumps to fundamentals in the economy.

Second, any temporal variation in the endogenously generated skewness and skewness

risk premium are solely due to the jump intensity process λt. For example, if the jump

intensity is constant, then it is clear that the skewness (under P and Q) and skewness risk

premium should be constant by (22) and (24). Third, since we have the fact of Aσ < 0

by the proposition 1, then in the case that the jump to the variance of consumption

growth rate exists, that is, in the case that λσ2,t > 0, we can show easily via (22) that

the risk-neutral skewness at time t, SkewQ
t (rm,t+1) , should be negative. Finally, we can

also find via (24) that in the case that either λx,t > 0 or λσ2,t > 0 is satisfied, the skewness

risk premium at time t, skpt, in equilibrium also should be negative due to the facts of

Ax > 0 and Aσ < 0.

Based on the definition of (23), let us provide the proposition on the representation

for the skewness risk premium in equilibrium.

Proposition 3 (The Skewness Risk Premium in Equilibrium) In equilibrium, the

skewness risk premium at time t, skpt, is linear to the variance-of-variance, qt, and the

jump intensity, λt, and the explicit representation of it is provided as follows:

skpt = βsp,c + βsp,qqt + βsp,λλt

where

βsp,c ≡
[
lxB

3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2)
]
µλ

βsp,q ≡
[
lxB

3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2)
]
ϕu(−ρϕξΛq − ϕuΛλ)

βsp,λ ≡
[
lxB

3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2)
]
ρλ

(25)

Proof Considering (6), (16), and the definition of the moment-generating function, it

is trivial to derive the above expression. ¤

From the above proposion, we find that any temporal variation in the endogenously

generated skewness risk premium is also solely due to the variance-of-variance qt and the

jump intensity λt as well as the volatility risk premium. Moreover, provided that Λx > 0

and Λσ2 < 0, the factor loading to the jump intensity, that is, βsp,λ, is guaranteed to be
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negative, but that to the variance-of-variance, that is, βsp,q, can be both positive and

negative in general. However, if the correlation between the dynamics of the variance-

of-variance and that of the jump intensity, that is , ρ, is posituve, then βsp,q is also

guaranteed to be negative due to the facts that Λq < 0 and Λλ < 0.

Before we turn to the next discussion, it will be useful to mention about some features

of the higher-order moments of the market returns and the risk premiums in them.

First, as mentioned in the introduction in this paper, the usual assumption of an affine

structure on the jump intensity process λt, that is, λt = l0 + l1σ
2
t where l0, l1 > 0 and

σ2
t is the variance of consumption growth rate, in the previous studies such as Drechsler

and Yaron[2011] can not explain an empirical fact on a simultaneous relation between

monthly stock returns and monthly changes of the option-implied skewness shown by

(1). It is because, under such assumption, we can show analytically that the regression

parameters to 4ISkewt+1 in (1) should be positive. However, based on our model

provided above, the correlation between the one-step-ahead market return, rm,t+1, and

the one-step-ahead change of risk-neutral skewness, 4SkewQ
t+1 ≡ SkewQ

t+1 − SkewQ
t , at

time t can be derived with (14) and (22) as follows:

Corr
(
rm,t+1,4SkewQ

t+1

)
= Kϕuκ1,m(ρAq,m + ϕuAλ,m)qt,

where K ≡ lxB
3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2).

According to the above expression, we find that when ρ < −ϕu
Aλ,m

Aq,m
the correlation

between rm,t+1 and 4SkewQ
t+1 ≡ SkewQ

t+1 − SkewQ
t should be negative because, in the

case of γ > 1 and ψ > 1, it is proved that K is negative . This observation is consistent

with the empirical fact of (1) shown in the introduction of this paper. Thus, we would

like to emphasize that there is considerable validity in our model setting compared with

the previous studies such as Drechsler and Yaron[2011], etc.

Second, although both the variance risk premium and the skewness risk premium are

linear to the variance-of-variance qt and the jump intensity λt, we can show that they

are mutually independent because of the fact that det ≡ βvp,qβsp,λ−βvp,λβsp,q is not zero,

which will be proved in the following section.

2.4 An Equity Risk Premium Representation

In this subsection, let us show an equity risk premium representation with the variance

and skewness risk premiums in equilibrium. In the beginning, we start with an expression

for the equity risk premium provided by Drechsler and Yaron[2011] as follows:

log Et(Rm,t+1) − rf,t = Bt
rGtG

t
tΛ + Πt

t(ψ(Br) − 1 − ψ(Br − Λ) + ψ(−Λ)),
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where

ψ(Br) ≡



0

ψx(Br(2))

ψσ2(Br(3))

0

0

0


, ψ(Br − Λ) ≡



0

ψx(Br(2) − Λx)

ψσ2(Br(3) − Λσ2)

0

0

0


, ψ(−Λ) ≡



0

ψx(−Λx)

ψσ2(−Λσ2)

0

0

0


,

As mentioned in Drechsler and Yaron[2011], the first term, Bt
rGtG

t
tΛ, represents the

contributions of the Gaussian shocks to the equity risk premium. In particular, according

to the expression of GtG
t
t = Hσ2σ2

t + Hqqt (see (20)), this term aggregates both the risk-

return tradeoff relationship and a true premium for variance risk. The next terms,

Πt
t(ψ(Br) − 1) − Πt

t(ψ(Br − Λ) − ψ(−Λ)), represent the contributions from the jump

processes. The derivation of this expression is presented in Appendix in Drechsler and

Yaron[2011].

The rf,t is the risk-free rate at time t in the economy and the explicit expression of

this rf,t is provided in the Appendix.

With the expression of GtG
t
t = Hσ2σ2

t +Hqqt and Πt ≡
(
0 λx,t λσ2,t 0 0 0

)t

, the

following representation can be obtained via the expression for the equity risk premium

shown above.

log Et(Rm,t+1) − rf,t = βer,σσ
2
t + βer,qqt + βer,λλt,

where βer,σ ≡ Bt
rHσΛ,

βer,q ≡ Bt
rHqΛ,

βer,λ ≡ lx

[
ψx(Br(2)) − 1 − ψx(Br(2) − Λx) + ψx(−Λx)

]
+ lσ

[
ψσ2(Br(3)) − 1 − ψσ(Br(3) − Λσ2) + ψσ(−Λσ2)

]
.

(26)

As shown in (26), the equity risk premium is driven by the state variables of σ2
t , qt, and λt

and have a time-varying nature essentially because those of variables have the stochastic

nature. In particular, in the case of γ > 1 and ψ > 1, it is proved that βer,σ > 0,

βer,q > 0, and βer,λ > 0 because of the facts of Λx > 0, Λσ2 < 0, Λq < 0, and Λλ < 0

from Proposition 1, so that if each of the state variables increases, then the equity risk

premium also increases, and vice versa.

The conditional variance of the equity return at time t is also presented by

VarP
t (rm,t+1) = Bt

rGtG
t
tBr + B2

r
t
diag

(
ψ(2)(0)

)
Πt

= Bt
rHσ2Brσ

2
t + Bt

rHqBrqt + (lxB
2
r (2)ψ(2)

x (0) + lσ2B2
r (3)ψ

(2)

σ2 (0))λt

≡ βvar,σσ
2
t + βvar,qqt + βvar,λλt,

so that with (21), (25), (26), and the above expression for the conditional variance of the

equity return we can derive an explicit equity risk premium representation of a linear
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factor pricing model with the variance and skewness risk premiums and the conditional

variance of the equity return.

Proposition 4 (An Explicit Representation for the Equity Risk Premium)

log Et(Rm,t+1) − rf,t = πc + πvarVarP
t (rm,t+1) + πvpvpt + πspskpt,

where

πc ≡
(
− βer,σβvar,q

βvar,σ

+ βer,q

)−βsp,λβvp,c + βvp,λβsp,c

det

+
(
− βer,σβvar,λ

βvar,σ

+ βer,λ

)βsp,qβvp,c − βvp,qβsp,c

det
,

πvar ≡
βer,σ

βvar,σ

,

πvp ≡
(
− βer,σβvar,q

βvar,σ

+ βer,q

)βsp, λ

det
−

(
− βer,σβvar,λ

βvar,σ

+ βer,λ

)βsp, q

det
,

πsp ≡ −
(
− βer,σβvar,q

βvar,σ

+ βer,q

)βvp, λ

det
+

(
− βer,σβvar,λ

βvar,σ

+ βer,λ

)βvp, q

det
,

det ≡ βvp,qβsp,λ − βvp,λβsp,q.

(27)

This representation of (27) suggests that the skewness risk premium, as well as the

variance risk premium and the conditional variance of the market return, constitutes the

dominant source of the variation in the equity risk premium. In the following section,

we can show that det in (27) is not zero under the usual parameter condition, so that

the skewness risk premium has an essential source of the variation in the equity risk

premium, which is different from that of the variance risk premium (see Fig.1).

 tq

 tλ

 
2

tσ

0000

 tftmt rR ,1, ][log −+Ε

 tvp
 tskp

Fig. 1: The Risk Premiums in Higher-Order Moments and the Equity Risk Premium

Some recent studies such as Bali and Hovakimian[2009], Yan[2009], Chang, et.al.[2012],

Driessen, et.al.[2012], and Rehman and Vilkov[2012] focus on a significant relationship
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between skewness or jump risks and expected stock returns, and they provide empirical

evidence for a significantly positive link between the expected stock returns and the jump

or skewness risks. To the best of our knowledge, this result of (27), which suggests an

explicit relationship between the skewness risk premium and the expected equity excess

return, is the first to provide a theoretical implication in their empirical evidence in terms

of the LRR model approach pioneered by Bansal and Yaron[2004].

3 Model Implications

Before turning to an empirical analysis based on the representation of (27), we show the

implications from a calibrated version of the theoretical model (27) to help guide and

interpret our subsequent empirical reduced form predictability regressions.

Table 1: The Set of Model Parameters

Parameter Source (Calibrated) Values

(1) Preference

ψ BST 2.5

(2) Consumption Growth

ϕη BY 1.0

(3) Long Run Risk

ρx BY 0.979

ϕe BY 0.044

(4) Variance

ρσ BTZ 0.978

(5) Variance-of-Variance

ρq BTZ 0.8

ϕξ BTZ 0.001

(6) Campbell-Shiller

κ1 BTZ 0.9

(7) Jump Intensity

ρλ CM 0.9

ϕu - 0.01

δx, δσ2 - 0.01

µλ - 1.0

lx, lσ2 - 1.0

This table reports the parameter values used in the calibration of the factor loadings in the theoretical model (27).

CM, BY, BTZ, and BST in this table denote values taken directly from Chan and Maheu[2002], Bansal and Yaron[2004],

Bollerslev, et.al.[2009], and Bollerslev, et.al.[2012], respectively.

Table 1 reports the parameter values used in the calibration of the factor loadings in

the theoretical model (27). CM, BY, BTZ, and BST in this table denote values taken

directly from Chan and Maheu[2002], Bansal and Yaron[2004], Bollerslev, et.al.[2009],

and Bollerslev, et.al.[2012], respectively. Those of previous studies refer to the unit time

interval in the calibrated equilibrium models as a month, and we also refer to that as the

same. Based on the parameters exhibited in Table 1, we calibrate the factor loadings of

18



the representation (21) for the variance risk premium and of the representation (25) for

the skewness risk premium in equilibrium.

The figures from Fig.2 to Fig.5 show those of factor loadings, βvp,q, βvp,λ, βsp,q, and

βsp,λ, corresponding to the parameters of the risk aversion parameters γ and the correla-

tion ρ between the volatility of volatility qt and the jump intensity λt. As is shown in the

previous section, βvp,λ, which is the factor loading to the jump intensity λt in the variance

risk premium representation (21), is positive essentially, and under the parameter values

exhibited in Table 1, βvp,q, which is the factor loading to the variance-of-variance qt in

(21), also seems to be positive. These results indicate that when the variance-of-variance

and (or) the jump intensity rise(s), the level of the variance risk premium also increases.

In contrast, βsp,λ, which is the factor loading to the jump intensity in the skewness risk

premium representation (25), is negative essentially as shown in the previous section,

and interestingly, βsp,q, which is the factor loading to the variance-of-variance in (25),

can be both positive and negative corresponding to the parameters of γ and ρ. These

results on the βsp,λ and the βsp,q indicate that although an increase in the jump inten-

sity reduces the level of the skewness risk premium essentially, but an increase in the

variance-of-variance will raise or reduce the level of that risk premium corresponding to

the γ and the ρ.
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The figures from Fig.6 to Fig.8 show the factor loadings to the variance of the market

return, the variance risk premium, and the skewness risk premium in the equity risk

premium representation (27). It is interesting that both of the πV ar and πvp are positive

and these results are irrelevant to the values of the γ and the ρ. Those of results are

consistent with the previous studies such as Bollerslev, et.al.[2009] and Drechsler and

Yaron[2012]. An important point to emphasize is that the factor loading of πskp, which

is the loading to the skewness risk premium in (27), can be positive corresponding to the
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risk aversion parameter γ. In particular, when the γ is over 4, it is clear from Fig.8 that

the πskp is strictly positive. This result indicates that a decrease in the skewness risk

premium, which is the case that the risk-neutral skewness is going to be much smaller

than the skewness under the physical measure, reduces the equity risk premium when

the γ is over 4. This implication is interesting as it shows the essential contribution of

the skewness risk premium to the equity risk premium explicitly implying the sign of the

πskp corresponding to the γ and the ρ. There has been no study that tried to provide

the theoretical equilibrium model which accounts for a close relationship between the

skewness risk premium and the equity risk premium endogeneously. To the best of

our knowledge, this is the first paper that demonstrates what mentioned above with a

calibration result of the proposed model.
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4 Empirical Measurements

The theoretical model outlined in the previous section suggests that the variance and

skewness risk premiums, as well as the variance of the market return, may serve as a

useful predictor for the future market returns. To examine that suggestion empirically, we

plan for running some statistical tests based on simple linear regressions of the S＆P500

excess returns on different sets of lagged predictor variables including the variance and

the skewness risk premiums. We always rely on monthly and quarterly observations. We

focus our discussion on the estimated slope coefficients and their statistical significance

as determined by the t-statistics. We also report the forecasts’ accuracy of the regressions

as measured by the corresponding adjusted R2s.

Before showing the results of the predictive regressions of the S＆P500 excess returns,

let us note some key points on the measurements for the variance and skewness risk

premiums and describe the data used in our analysis explored in the following.

4.1 Measurements for the Higher-Order Moments

Our method for measuring the risk premiums in higher-order moments is similar to

that in Bollerslev, et.al.[2009] and Drechsler and Yaron[2011]. As mentioned above, we

formally define the variance risk premium as the difference between the risk-neutral and

physical expectations of the variance of the market return and also define the skewness

risk premium in the same manner. We focus on the one-month- and three-month-forward

predictability of those of the risk premiums and use the squared VIX and the SKEW

index from the Chicago Board of Options Exchange (CBOE) as our measures for the

risk-neutral expected variance and skewness, respectively. The VIX is calculated by

the CBOE using the model-free approach to measure 30-day expected volatility of the S
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＆P500 return. The components of the VIX are near- and next-term put and call options,

usually in the first and second SPX (S＆ P500 index) contract months. The model-free

approach used to calculate the VIX is provided by, for example, Demeterfi, et.al.[1999].

The SKEW index from the CBOE is also calculated from the S＆ P 500 option prices

based on the method similar to that used to calculate the VIX, which is obtained by

a portfolio of S＆ P 500 index options that mimics an exposure to the skewness payoff

of one-step-ahead cumulative return distribution of the index. The Skew index is also

calculated by the model-free approach provided, for example, Bakshi, et.al.[2003]. 3

For the measures for the expected variance and skewness under the physical measure,

we use the current variance and skewness of the S＆ P500 index return, which are

respectively defined as the historical 22 days actual variance estimated based on daily

return data of the index and the historical 12 months actual skewness estimated based on

monthly return data of the index. To match the definition of those of historical moments

of the index return distribution with the risk-neutral expected moments mentioned above,

we use the annualized current variance, while the current skewness, which is estimated

based on historical 12 months monthly return data, is used as it is. Bollerslev, et.al.[2009]

suggest that, for highly persistent variance dynamics, or ρσ ≈ 1, the objective expected

future variance will obviously be close to the value of the current variance so that the

same qualitative implications hold true for the variance difference obtained by replacing

EP
t [V arP

t+1(rm,t+2)] in Equation (18) with the current variance. In a similar point of view,

the same may be said of the objective expected future skewness. Moreover, compared

to the variance and skewness risk premiums defined by (18) and (23), respectively, the

usage of the historical return moments in order to substitute for the objective expected

future moments has the advantage that those of risk premiums are directly observable at

time t. This is obviously important from a forecasting perspective. It is for these reasons

mentioned above that we use the current variance and skewness of the index return to

measure the expected variance and skewness under the physical measure.

4.2 Data Description

Our data series for the VIX, SKEW index, and expected variance and skewness under P
covers the period from January 1990 to August 2012. The main limitation on the length

of our sample comes from the VIX and SKEW index , since the time series published by

the CBOE begins in January 1990. As mentioned in the previous subsection, we rely on

the monthly and quarterly data for the squared VIX and SKEW index for quantifying

EQ
t [V arQ

t+1(rm,t+2)] in (18) and EQ
t [SkewQ

t+1(rm,t+2)] in (23), respectively, and purposely

rely on the readily available squared VIX as our measure for that risk-neutral expected

3According to the description of the CBOE’s SKEW index, we have the proxy for the risk-neutral
expected skewness, EQ

t [SkewQ
t+1(rm,t+2)], as 1

10 (100 − SKEW index).
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variance and the value of 1
10

(100 − SKEW index) as our measure for that risk-neutral

expected skewness. The expected variance EP
t [V arP

t+1(rm,t+2)] and the expected skewness

EP
t [SkewP

t+1(rm,t+2)] at time t are respectively calculated based on the historical index

returns as described in the previous subsection.
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Fig. 9: The VIX and The Current Volatility

This figure shows the time-series data of the VIX and the current volatility (the square root
of the current variance defined in the main paper). The current volatility is the historical 22 days
actual volatility estimated based on daily return data of the S＆ P500 index.
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Fig. 10: The Risk-Neutral Skewness and The Current Skewness

This figure shows the time-series data of the risk-neutral expected skewness extracted from the
SKEW index and the current skewness. The current skewness is the historical 12 months actual
skewness estimated based on monthly return data of the S＆ P500 index.

To illustrate the data, Fig.9 and Fig.10 plot the monthly time series of the risk-
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neutral expected volatility (VIX), the current volatility (historical 22 days annualized

actual volatility), the risk-neutral expected skewness, and the current skewness (historical

12 months actual skewness). Consistent with the theoretical model developed in the

previous section and the earlier empirical evidence, the spread between the risk-neutral

expected variance (the squared VIX) and the current variance is almost always positive

and the spread between the risk-neutral expected skewness and the current skewness is

almost always negative. It is interesting that, although the value of the VIX reaches an

outstanding peak at the period of the Rehman crisis in 2008, the risk-neutral skewness

seems to be more negative at the period of the European financial crisis in 2011 than at

the period of the Rehman crisis.

In addition to the variance and skewness risk premiums, we also consider a set of

other more traditional predictor variables for the predictive regressions examined in the

following subsection. Specifically, we obtain monthly P/E ratios and dividend yields for

the S＆ P 500 directly from Standard＆ Poor’s. Data on the three-month T-bill, the

high-yield spread (hys) (between Moody’s BAA and AAA corporate bond spreads), and

the term spread (ts) (between the ten-year T-bond and the three-month T-bill yields)

are taken from the Thomson Reuters Data Stream. The CAY as defined in Lettau and

Ludvigson[2001] is downloaded from Lettau and Ludvigson’s Web site.

Basic summary statistics for the monthly returns and predictor variables are given in

Table 2. The sample period extends from January 1990 to August 2012. All variables

are reported in monthly-based percentage form whenever appropriate. The rm,t − rf,t

denotes the logarithmic return on the S＆P 500 in excess of the three-month T-bill rate.

V IX2 denotes the squared VIX index. ISKew refers to the risk-neutral expected skewness

extracted from the CBOE SKEW index by the formula of ISkew = 1
10

(100−Skew index).

CVar and CSkew refer to the current variance, which is the annualized actual variance

based on historical 22 days daily return data, and the current skewness, which is the

actual skewness based on historical 12 months monthly return data, respectively. vp

and skp respectively refer to the variance and skewness risk premiums, that is, vp ≡
V IX2 − CV ar and skp ≡ ISkew − CSkew. The predictor variables include the log

price-earning ratio ln(pe), the log dividend yield ln(dy), the high yield spread (hys)

defined as the difference between Moody’s BAA and AAA bond yield indices, and the

term spread (ts) defined as the difference between the ten-year and three-month Treasury

yields.

The mean excess return on the S＆P 500 over the sample equals 0.3％ monthly. The

sample means for the V IX2 and the current (historical 22 days) annualized variance

are 6.0％ and 5.0％, respectively, and the sample means for the risk-neutral expected

skewness and the current (historical 12 months) skewness are -1.6 and -0.2, respectively.

The numbers for the traditional forecasting variables are all directly in line with those

reported in previous studies. In particular, all of the variables are highly persistent with
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first-order autocorrelations ranging from 0.95 to 0.99.

Table 2: Summary statistics for the monthly returns and predictor variables
rm,t − rf,t V IX2 ISkew CVar CSkew vp skp ln(pe) ln(dy) hys ts

(A) Summary Statistics

(1) Mean 0.3 ％ 6.0 ％ -1.6 5.0 ％ -0.2 1.0 ％ -1.4 3.1 0.7 1.0 ％ 1.9 ％
(2) Std. Dev. 4.4 ％ 2.3 ％ 0.5 3.1 ％ 0.7 1.5 ％ 0.8 0.4 0.3 0.4 ％ 1.2 ％
(3) Skewness -0.6 1.6 -0.4 2.7 -0.2 -2.2 0.2 2.3 0.1 3.2 -0.2

(4) Kurtosis 1.1 3.9 -0.2 10.7 0.7 9.9 0.0 7.1 -0.6 12.9 -1.1

(5) AR(1) 0.07 0.85 0.56 0.75 0.91 0.22 0.74 0.95 0.99 0.96 0.97

(B) Correlation Matrix

rm,t − rf,t 1

V IX2 0.02 1

ISkew 0.06 -0.00 1

CVar -0.11 0.87 0.03 1

CSkew -0.10 -0.06 0.19 -0.03 1

vp 0.25 -0.25 -0.07 -0.69 -0.03 1

skp 0.13 0.05 0.48 0.04 -0.77 -0.01 1

ln(pe) 0.01 0.25 0.00 0.15 0.00 0.08 0.00 1

ln(dy) 0.08 -0.14 0.11 -0.10 0.09 -0.02 -0.01 -0.35 1

hys -0.05 0.64 -0.04 0.67 0.07 -0.38 -0.09 0.16 0.21 1

ts -0.02 0.06 0.08 0.05 0.33 -0.02 -0.24 0.28 0.38 0.26 1

The sample period extends from January 1990 to August 2012. All variables are reported in monthly-based percentage

form whenever appropriate. The rm,t − rf,t denotes the logarithmic return on the S ＆ P 500 in excess of the three-month

T-bill rate. V IX2 denotes the squared VIX index. ISKew refers to the risk-neutral expected skewness extracted from the

CBOE SKEW index by the formula of ISkew = 1
10

(100 − Skew index). CVar and CSkew refer to the current variance,

which is the annualized actual variance based on historical 22 days daily return data, and the current skewness, which is

the actual skewness based on historical 12 months monthly return data, respectively. vp and skp respectively refer to the

variance and skewness risk premiums, that is, vp ≡ V IX2 − CV ar and skp ≡ ISkew − CSkew. The predictor variables

include the log price-earning ratio ln(pe), the log dividend yield ln(dy), the high yield spread (hys) defined as the difference

between Moody’s BAA and AAA bond yield indices, and the term spread (ts) defined as the difference between the ten-year

and three-month Treasury yields.

4.3 Main Empirical Findings

Table 3 provides the results of return predictability regressions with the variance and

skewness risk premiums. All of our forecasts are based on simple linear regressions of

the S＆ P500 excess returns on different sets of lagged predictor variables. There are

two sets of columns with regression estimates. The first set of columns shows OLS esti-

mates by monthly return regressions, that is, one-month-ahead forecasts and the second

set shows OLS estimates by non-overlapped quarterly return regressions, that is, one-

quarter-ahead forecasts. These regressions are examined in the period from January 1990

to August 2012 and, in particular, each of the monthly return regressions is examined

by 270-month samples and each of the quarterly return regressions is examined by 88-

quarter samples. Each of the sets of columns consists of five regression results. The first

two regressions are one-factor regression models using the variance risk premium (vp-

model) or the skewness risk premium (skp-model) as a univariate regressor, while the

third regression is two-factor regression model using both the variance and skewness risk
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premiums (vp+skp-model). The fourth regression model, which is denoted by 3-factor-

model, represents the theoretical linear model of (27) derived in the previous section.

Finally, we also provide the stepwise-selection model (Stepwise-model) of which the uni-

verse of independent variables consists of the risk premiums in higher-order moments,

changes of those of risk premiums, and one of the traditional predictor variables, that is,

the log price-earning ratio ln(pe). The variables such as 4V IX2 and 4ISkew exhibited

in this table are monthly or quarterly changes of the V IX2 and ISkew, respectively.

Table 3: The Monthly and Quarterly Return Regressions
(A) Monthly Return Regression Models (B) Quarterly Return Regression Models

vp skp vp+skp 3-

factor

Stepwise vp skp vp+skp 3-

factor

Stepwise

Constant -0.004 0.013 0.006 -0.004 -0.015 -0.007 0.027 0.016 -0.042 -0.042

(t-stat) -1.18 2.43** 1.18 -0.42 -1.57 -0.68 1.48 0.91 -1.44 -1.44

V IX2

ISkew

CVar 0.158 0.312 0.909 0.909

1.37 2.54** 2.43** 2.43**

CSkew

4 V IX2 -0.883

-3.35***

4 ISkew

4 CVar 0.369

2.11**

4 CSkew

vp 0.699 0.704 0.921 1.416 1.529 1.646 2.845 2.845

4.19*** 4.25*** 4.02*** 4.85*** 2.95*** 3.17*** 4.03*** 4.03***

skp 0.007 0.007 0.007 0.008 0.013 0.019 0.018 0.018

2.11** 2.22** 2.16** 2.42** 1.11 1.60 1.56 1.56

4 vp

4 skp

ln(pe)

Adj.R2 5.8 ％ 1.3 ％ 7.2 ％ 7.5 ％ 10.6 ％ 8.1 ％ 0.3 ％ 9.8 ％ 14.7％ 14.7％

The sample period extends from January 1990 to August 2012. V IX2 denotes the squared VIX index. ISKew refers to

the risk-neutral expected skewness extracted from the CBOE SKEW index by the formula of ISkew = 1
10

(100−Skew index).

CVar and CSkew refer to the current variance, which is the annualized actual variance based on historical 22 days daily

return data, and the current skewness, which is the actual skewness based on historical 12 months monthly return data,

respectively. vp and skp respectively refer to the variance and skewness risk premiums, that is, vp ≡ V IX2 − CV ar and

skp ≡ ISkew − CSkew. The variables such as 4V IX2 and 4ISkew exhibited in this table are monthly or quarterly

changes of the V IX2 and the ISkew, respectively. The predictor variables include the log price-earning ratio ln(pe).

From the monthly return regression results in this table, we can find that the slope

coefficients of the vp- and skp-model are both significant at 5％ level and, in particular,

the slope coefficient of the vp-model is significant at 1％ level. Moreover, the slope coef-
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ficients of the vp+skp-model are also significant at the same level with which mentioned

above, and this model can account for about 7.2％ of the monthly return variation. The

3-factor-model represents the theoretical implication of (27) and this model has a supe-

rior predictive power in the adjusted R2 than the vp+skp-model due to the additional

variable of the current variance (CVar). Although the stepwise-model is not equivalent

to the theoretical implication of (27), that is, the 3-factor-model, all the independent

variables of CVar, vp, and skp in (27) are significant at 5％ or 1％ level. These results

indicate that the theoretical model of (27) and, in particular, the variance and skewness

risk premiums have superior predictive power for future aggregate stock market index

returns, and this indication is consistent with the theory provided in the previous section

in this paper.

The quarterly regressions reported in this table further underscore the significance

of the monthly return regressions and, in contrast to the monthly return regressions, all

of the t-statistics for the skewness risk premium are insignificant at conventional levels.

But, interestingly, we can find that the stepwise-model is perfectly equivalent to the

theoretical implication of (27), that is, the 3-factor-model, and this model can account

for about 14.7％ of the quarterly return variation. Although the slope coefficient to

the skewness risk premium is not significant as mentioned above, the coefficients to the

variance risk premium and the current variance are both significant at 5％ level and, in

particular, at 1％ level for the variance risk premium.

Table 4: The Univariate Regressions with Traditional Predictor Variables

(A) Monthly Return Regressions

ln(pe) 4 ln(pe) ln(dy) 4 ln(dy) hys 4 hys ts 4 ts

Slope Coeff. 0.001 -0.002 0.011 -0.090 -0.516 -1.822 -0.084 -0.513

p-Value (％) 86.7 93.1 22.4 15.1 40.0 38.4 71.2 56.6

Adj.R2 (％) -0.4 -0.4 0.2 0.4 -0.1 -0.1 -0.3 -0.3

(B) Quarterly Return Regressions

ln(pe) 4 ln(pe) ln(dy) 4 ln(dy) hys 4 hys ts 4 ts

Slope Coeff. 0.008 0.059 0.038 -0.093 -1.118 -7.402 -0.132 -1.661

p-Value (％) 73.8 10.6 20.6 41.3 58.8 2.5** 86.4 31.6

Adj.R2 (％) -1.0 1.9 0.7 -0.4 -0.8 4.6 -1.1 0.0

The sample period extends from January 1990 to August 2012. We obtain monthly P/E ratios (pe) and dividend

yields (dy) for the S ＆ P 500 directly from Standard ＆ Poor’s. Data on the three-month T-bill, the high-yield spread

(hys) (between Moody’s BAA and AAA corporate bond spreads), and the term spread (ts) (between the ten-year T-bond

and the three-month T-bill yields) are taken from the Thomson Reuters Data Stream.

Let us show the other results to emphasize the superiority of the skewness risk pre-

mium, as well as the variance risk premium, as a predictor variable for the equity excess

return. Table 4 reports monthly- and quarterly-based predictive regression results for the

S＆P500 index excess returns with each of the traditional predictor variables exhibited
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in this table, that is, the price-earning ratio (pe), dividend yield (dy), high-yield spread

(hys), and term spread (ts) defined in the previous subsection and the changes of those

of the variables. As shown in this table, we can find that, in the case of the monthly

return regressions, none of the predictor variables are superior in the adjusted R2 to the

variance and skewness risk premiums. In the case of the quarterly return regressions in

this table, it seems that there are some variables which have superior adjusted R2 in

comparison with the skewness risk premium, but, none of the variables in this table are

superior in the adjusted R2 to the variance risk premium. (See Table 3)

Table 5: Summary statistics for the CAY

rm,t − rf,t cay vp skp

(A) Summary Statistics

(1) Mean 0.29 ％ 0.21 ％ 0.94 ％ -132.51 ％
(2) Std. Dev. 4.38 ％ 2.38 ％ 1.55 ％ 75.83 ％
(3) Skewness -0.59 -0.11 -2.27 0.18

(4) Kurtosis 1.12 -1.40 10.02 0.08

(5) AR(1) 0.08 0.98 0.23 0.75

(B) Correlation Matrix

rm,t − rf,t 1

cay 0.09 1

vp 0.24 0.17 1

skp 0.14 0.26 0.01 1

The sample period extends from January 1990 to January 2012. The CAY is the aggregate-consumption wealth ratio

defined in Lettau and Ludvigson[2001], which is quarterly-based data and downloaded from Lettau and Ludvigson’s web

site.

Table 6: The Univariate Regressions with the CAY

(A) Monthly Return Regressions

cay vp skp

Slope Coeff. 0.157 0.683 0.008

p-Value (％) 17.2 0.0*** 2.3**

Adj.R2 (％) 0.3 5.5 1.6

(B) Quarterly Return Regressions

cay vp skp

Slope Coeff. 0.418 1.618 0.016

p-Value (％) 27.4 0.2*** 21.5

Adj.R2 (％) 0.2 9.3 0.7

The sample period extends from January 1990 to January 2012. The CAY is the aggregate-consumption wealth ratio

defined in Lettau and Ludvigson[2001], which is quarterly-based data and downloaded from Lettau and Ludvigson’s web

site. For the monthly return regressions, we define a monthly CAY series from the most recent quarterly observation.

Table 6 reports monthly- and quarterly-based predictive regression results for the S
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＆P500 index excess returns with the CAY, the aggregate-consumption wealth ratio de-

fined in Lettau and Ludvigson[2001]. The CAY is quarterly-based data and downloaded

from Lettau and Ludvigson’s web site. The downloaded data covers January 1990 to

January 2012. Table 5 shows summary statistics for the CAY as well as the variance

and skewness risk premiums under the period from January 1990 to January 2012. For

the monthly return regressions, we define a monthly CAY series from the most recent

quarterly observation.

As shown in Table 6, we can find that the CAY does not seem to be superior predictor

variable in comparison with the variance and skewness risk premiums. This result is

similar to the results in Table 4 and also suggests that the skewness risk premium, as

well as the variance risk premium, has superior predictive power for future aggregate

stock market index returns.

5 Concluding Remarks

In this paper, we study risk premiums in higher order moments of financial asset re-

turns in a general equilibrium setting. Extending the model proposed by Drechsler and

Yaron[2011] with a stochastic jump intensity in the processes of both the long-run risk

factor and the variance of consumption growth rate, we provide an explicit representation

for the variance and skewness risk premiums in a general equilibrium setting. Modeling

the stochastic jump intensity endogeneously and deriving a representation of the risk-

neutral skewness with that intensity, we propose a possible reason of the empirical fact

of time-varying and negative risk-neutral skewness. In particular, we find that the exis-

tence of the negative risk-neutral skewness and the skewness risk premium have a close

relationship with the existence of the jumps and the jump risk premium, respectively.

Moreover, providing an equity risk premium representation of a linear factor pricing

model with the variance and skewness risk premiums, we demonstrate the reason why

those risk premiums are able to explain a nontrivial fraction of the time series variation

in the aggregate stock market returns. Finally, we show an empirical evidence in which

the skewness risk premium, as well as the variance risk premium, has superior predictive

power for future aggregate stock market index returns.

Some recent studies such as Bali and Hovakimian[2009], Yan[2009], Chang, et.al.[2013],

Driessen, et.al.[2012], and Rehman and Vilkov[2012] focus on a significant relationship

between skewness or jump risks and expected stock returns, and they provide empiri-

cal evidence for a significantly positive link between the expected stock returns and the

jump or skewness risks. To the best of our knowledge, this study is the first to provide a

theoretical implication in their empirical evidence in terms of the LRR model approach

pioneered by Bansal and Yaron[2004]. It remains some challenges for future research

on providing an explicit theoretical explanation for the results presented by the recent
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studies cited above with the theoretical implication shown in this paper. And moreover,

it also needs a detailed analysis on the reasons why the skewness and variance risks are

priced differently and, in particular, independently of each other. Further insight into

this aspect is left to further work.

Appendix A Proof of Proposition 2

From the definition of the variance risk premium (18) and the expressions of the condi-

tional variance of the market return rm,t+2 on time t + 1 under each of the probability

measures, we can derive the following expression,

vpt = −Bt
r

[
Λσ2Hσ2 + ϕξ(ϕξΛq + ρϕuΛλ)Hq

]
Brqt

+ Bt
rHσ2Br

[
EQ

t [JQ
σ2,t+1] − EP

t [J
P
σ2,t+1]

]
+ B2

r
t
[
diag(ψ(2)(−Λ))EQ

t [Πt+1] − diag(ψ(2)(0))EP
t [Πt+1]

]
,

(28)

where Λq ≡ (1 − θ)κ1Aq, Λλ ≡ (1 − θ)κ1Aλ (See (13)), and

diag
(
ψ(2)(−Λ)

)
≡



0 0 0 0 0 0

0 ψ
(2)
x (−Λx) 0 0 0 0

0 0 ψ
(2)

σ2 (−Λσ2) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

EQ
t [Πt+1] ≡

(
0 EQ

t [λx,t+1] EQ
t [λσ2,t+1] 0 0 0

)t

,

EP
t [Πt+1] ≡

(
0 EP

t [λx,t+1] EP
t [λσ2,t+1] 0 0 0

)t

,

Substituting the following facts,

EQ
t [JQ

σ2,t+1] = λσ2,tψ
(1)

σ2 (−Λσ2),

EP
t [J

P
σ2,t+1] = λσ2,tψ

(1)

σ2 (0),

into (28) and considering (6) and (16), we can obtain the representation (21). ¤

Appendix B The Risk-Free Rate

The explicit expression of the risk-free rate can be obtained by substituting rf,t into rj,t+1

in (3). We finally provide the following proposition on the risk-free rate rf,t.
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Proposition 5 (The Risk-Free Rate) The risk free rate is expressed as follows in

terms of the state variables of σ2
t , qt, and λt.

rf,t = βrf,c + βrf,xxt + βrf,σσ
2
t + βrf,qqt + βrf,λλt

where

βrf,c ≡ −θ log δ + γµg − (θ − 1)(κ0 − A0) − (θ − 1)κ1(A0 + Aσµσ + Aqµq + Aλµλ)

βrf,x ≡ γ − (θ − 1)Ax(κ1ρx − 1)

βrf,σ ≡ (1 − θ)Aσ(κ1ρσ − 1) − 1

2

[
γ2ϕ2

η + (θ − 1)2κ2
1A

2
xϕ

2
e

]
βrf,q ≡ (1 − θ)Aq(κ1ρq − 1) − 1

2
(θ − 1)2κ2

1

[
A2

σ + A2
qϕ

2
ξ + 2AqAλϕξϕuρ + A2

λϕ
2
u

]
βrf,λ ≡ (1 − θ)Aλ(κ1ρλ − 1)

− lx

[
exp(

1

2
(θ − 1)2κ2

1A
2
x) − 1

]
− lσ

[
exp(

1

2
(θ − 1)2κ2

1A
2
σ) − 1

]
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