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1 Introduction

In developing risk management strategies for financial option portfolios in incomplete

markets, it is necessary to specify the sources of risks in the markets and to select a

option pricing model which is consistent with those of specified risks. In particular, for

the practitioners it is essential to consider the matters mentioned above for their risk

management processes. But, even if the risk managers develop a sophisticated model

with a consistent manner in terms of the specified risks, the option portfolios can not

be hedged perfectly in incomplete markets due to the sources of unhedgeable risks and

are exposed to the risk of significant losses in the processes of managing their option

portfolios. Thus, the studies on empirical option prices and the features of delta-hedged

option returns are important for the risk managers of option portfolios. Moreover, it is

well known that delta-hedged option returns play a key role in identifying the principles

of valuation and the sources of prices in actual option market.

For these reasons, a rich body of research on empirical option prices and delta-hedged

option returns in financial option markets has developed in recent years with some styl-

ized empirical analyses. Coval and Shumway[2001] examine expected option returns in

the context of mainstream asset pricing theory and their results strongly suggest that

something besides market risk is important in pricing the risk associated with option con-

tracts. They imply that systematic stochastic volatility may be an important factor in

pricing assets. Bakshi and Kapadia[2003] and Low and Zhang[2005] study delta-hedged

option returns in a stock index option market and currency option markets respectively

and they provide an evidence that expected delta-hedged option returns are not zero

because of negative stochastic volatility risk premiums. Goyal and Saretto[2009] study

a cross-section of stock option returns by sorting stocks on the difference between his-

torical realized volatility and at-the-money implied volatility. They find that a zero-cost

trading strategy that is long (short) in a position with a large positive (negative) dif-

ference between these two volatility measures produces an economically and statistically

significant return due to some unknown risk factors or mispricing. Broadie, Chernov, and

Johannes[2009] conclude that option portfolio returns can be well explained if we consider

jump risk premiums or model parameter estimation risk. They assume that investors

account for uncertainty in the spot volatility and parameters when pricing options.

Although these studies identify and investigate the sources of financial option prices

in terms of some systematic risk factors or mispricing separately, they do not demonstrate

any relative contribution to option prices between systematic risk factors and mispricing

based on a unified approach.

Jones[2006] presents the most recent research that provides a unified approach to

demonstrate the relative contribution of the sources of stock index option prices based

on a non-linear factor analysis. He examines the historical performances of equity index
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option portfolios in the period from January 1986 to September 2000 and shows that

priced risk factors such as stochastic volatility and jump contribute to their extraordinary

average returns but are insufficient to explain their magnitudes, particularly for short-

term out-of-the-money puts. This may be the only study that provides a unified approach

to demonstrate the relative contribution of the sources of financial option prices based

on a stylized model, but the author does not reveal any sources besides the priced risk

factors such as stochastic volatility and jump that contribute to the option portfolios’

extraordinary average returns. The author also does not show the time dependency of

the relative contribution between the systematic risk factors and other potential sources

such as mispricing to financial option prices especially during the period of the recent

financial crisis in 2008 because his empirical analysis is based on the period from January

1986 to September 2000.

In this papaer, we present the relative contribution analysis of the effect of systematic

risk factors and the effect of ”parameter uncertainty” of option valuation models on

financial option prices based on a historical simulation in the pre- and post Lehman

crisis period. Theoretical models often assume that the economic agent who makes

an optimal financial decision knows the true parameters of the model. But the true

parameters are rarely if ever known to the decision maker. In reality, model parameters

have to be estimated based on historical information and, hence, the model’s usefulness

depends partly on how good the estimates are. This gives rise to estimation risk in

virtually all option valuation models.

We provide a novel representation of delta-hedged option returns in a stochastic

volatility environment. The representation of delta-hedged option returns provided in

this paper consists of two terms; volatility risk premium and parameter uncertainty. In an

empirical analysis, we examine the delta-hedged option returns of the USD-JPY currency

options based on a historical simulation from October 2003 to June 2010. We find that

the delta-hedged option returns for OTM put options are strongly affected by parameter

uncertainty as well as the volatility risk premium, especially in the post-Lehman shock

period.

To the best of our knowledge, this is the first empirical research on the relative

contribution analysis of the effects of systematic risk factors and parameter uncertainty

on delta-hedged option returns in a stochastic volatility environment. Of course, there are

some prior studies on the effects of parameter (or model) uncertainty on pricing financial

options (Green and Figlewski[1999], Bunnin, Guo, and Ren[2002], Cont[2006], etc.) ,

but there is no empirical evidence that shows the relative contribution of parameter

uncertainty to delta-hedged option returns or the time dependency of that contribution.

In our empirical study, approximately 13％ of the value of the OTM currency option

premium is generated by the existence of parameter uncertainty in the post-Lehman

crisis period, and this effect induced by parameter uncertainty on option prices is more
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significant than the effect of the volatility risk premium. One of the most important

implications of our study is that the sign and the level of the expected delta-hedged

option returns do not necessarily explain the existence of volatility risk premiums. An

important point to emphasize is that there may be additional important factors such as

parameter uncertainty that make an impact on delta-hedged option returns, rendering

standard hedging-based tests on volatility risk premiums explored and examined by, for

example, Bakshi and Kapadia[2003] and Low and Zhang[2005], unreliable.

The paper is organized as follows: Section 2 describes the model structure and pro-

vides the explicit representation of delta-hedged option returns. An estimation methodol-

ogy for the time-varying volatility risk premium in the USD-JPY currency option market

is also explored in this section. Section 3 describes the basic methodology used in our

empirical analysis, and Section 4 illustrates the nature of the delta-hedged option returns

and presents empirical findings on the relative contributions of the effects of the volatil-

ity risk premium and parameter uncertainty on delta-hedged option returns. Section 5

summarizes the main results of the paper.

2 The Model and the Methodology

2.1 An explicit representation for delta-hedged option returns

We start with a filtered probability space (Ω,F , P; {Ft}t≥0), t ∈ [0, T ] and consider a two

dimensional exchange rate process that allows return volatility to be stochastic under

the physical probability measure P:

dSt

St

= µtdt + σt

√
1 − ρ2

t dW 1
t + σtρtdW 2

t ,

dσt = θtdt + ηtdW 2
t ,

(1)

where µt, θt, ηt and ρt are {Ft}t≥0-adapted stochastic processes which allow the above

equations to have a strong solution and these processes are independent of St. (W 1
t ,W 2

t ,W 3
t )

denote a standard 3-dimensional Brownian motion on the probability space (Ω,F , P) and

we give the information set Ft as a sigma-algebra of σ{W 1
s ,W 2

s ,W 3
s |s ≤ t}∨N where N

is the null set. In this paper, we assume that the price and volatility process represented

by (1) are observable in the financial market and, to avoid complexity, hereinafter we

also assume that the drift parameter µt in (1) is given by rd − rf , where rd ∈ R and

rf ∈ R denote the domestic and the foreign risk-free interest rate, respectively.

We limit the model of an exchange rate process to a stochastic volatility model and do

not consider other factors such as the jump. Although this model is rather restrictive, but

in Andersen, Bollerslev, Diebold and Labys[2000], based on ten years of high-frequency

returns for the Deutschemark - U.S. Dollar and Japanese Yen - U.S. Dollar exchange,

they provide indirect support for the assertion of a jumpless diffusion with a fact that
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the presence of jumps is likely to result in a violation of the empirical normality of the

standardized returns.

It is well known that the absence of arbitrage opportunities is essentially equivalent

to the existence of a probability measure Q, equivalent to the physical probability mea-

sure P, under which the discounted prices process is an Ft-adapted martingale; such

a probability will be called equivalent martingale measure. Any equivalent martingale

measure Q is characterized by a continuous version of its density process with respect to

P which can be written from the integral form of martingale representation

Mt ≡
dQ
dP

|Ft≡ exp
(
−

∫ t

0

νudW 1
u −

∫ t

0

λudW 2
u − 1

2

∫ t

0

ν2
udu − 1

2

∫ t

0

λ2
udu

)
,

where (νt, λt) is adapted to Ft and satisfies the integrability conditions
∫ T

0
ν2

udu < ∞
and

∫ T

0
λ2

udu < ∞ a.s.. Two processes of νt and λt are interpreted as the price of

risk premia relative respectively to the two sources of uncertainty W 1
t and W 2

t . In

particular, if Λt ≡ MtBt denotes the discount factor process where Bt ≡ exp
(
− rdt

)
and rd ∈ R is the domestic risk-free interest rate, then the price of volatility risk λt is

represented as λt ≡ −Covt(
dΛt

Λt
, dσt) (See, e.g., Cochrane[2005]) and a positive correlation

between the discount factor process Λt and the volatility process σt implies a negative

λt. To understand clearly, for example, if we could assume the stochastic volatility

model proposed by Heston[1993] for (1) and the representative agent with a power utility

function in the financial market, then we can derive the following equation 1

Covt

(dΛt

Λt

, dσt

)
= −γρvσt,

where γ ∈ R is the risk aversion parameter for the representative agent and ρ ∈ [−1, 1]

and v > 0 correspond to ρt and ηt respectively in (1). This relation suggests that the

market price of volatility risk λt is proportional to ρ, and if the correlation between

volatility changes and changes in the exchange rate is negative, then the market price

of volatility risk is also negative. Hereinafter we also describe Q by Q[λt] to emphasize

that Q is depend on the process of λt.

CTP
t ≡ F (t, St, σt) denote the time-t theoretical price of an European-type call option

2 which is consistent with the equation (1) and the market preference. This CTP
t is

written on St, struck at K, expiring at time T, and represented by a C1,2,2-function

F (t, S, σ). Under the equivalent martingale measure Q (which is also consistent with

(1) and the market preference), we can give an explicit representation for CTP
t in the

following manner:

CTP
t ≡ F (t, St, σt) = e−rd(T−t)EQ[max(ST − K, 0) | Ft]. (2)

1Details will be described in section 4.1.
2In this section, we focus on an European call option, but the discussion and results provided in this

section can apply more generally to other options, that is, put options or straddle options.
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Let us explore the theoretical delta-hedged option returns for CTP
t = F (t, St, σt) based

on the above assumption.

Under the assumption of 0 ≤ τ ≤ T − t, we can derive a following equation via Ito’s

lemma:

CTP
t+τ = CTP

t +

∫ t+τ

t

∂F

∂S
(u, Su, σu)dSu

+

∫ t+τ

t

∂F

∂σ
(u, Su, σu)dσu +

∫ t+τ

t

DF (u, Su, σu)du,

(3)

where

DF (t, St, σt) =
∂F

∂t
(t, St, σt) +

1

2
σ2

t S
2
t

∂2F

∂S2
(t, St, σt)

+
1

2
η2

t

∂2F

∂σ2
(t, St, σt) + ρtηtσtSt

∂2F

∂S∂σ
(t, St, σt).

If we define the delta-hedged gain and loss (hereinafter, DHGL) Πt,t+τ for CTP
t in the

period of [t, t + τ ] by

Πt,t+τ ≡ CTP
t+τ − CTP

t −
∫ t+τ

t

∂F

∂S
(u, Su, σu)dSu

−
∫ t+τ

t

(
rdF (u, Su, σu) − (rd − rf )Su

∂F

∂S
(u, Su, σu)

)
du,

then, from (3) it follows

Πt,t+τ =

∫ t+τ

t

∂F

∂σ
(u, Su, σu)dσu +

∫ t+τ

t

DF (u, Su, σu)du

−
∫ t+τ

t

(
rdF (u, Su, σu) − (rd − rf )Su

∂F

∂S
(u, Su, σu)

)
du

=

∫ t+τ

t

LF (u, Su, σu)du +

∫ t+τ

t

ηu
∂F

∂σ
(u, Su, σu)dW 2

u ,

(4)

where

LF (u, Su, σu) = θu
∂F

∂σ
(u, Su, σu)

+ DF (u, Su, σu) −
[
rdF (u, Su, σu) − (rd − rf )Su

∂F

∂S
(u, Su, σu)

]
.

(5)

All the discussion on the DHGL explored above is valid when we know all the param-

eters of the model (1) perfectly and price options by a consistent manner with the model

(1) under the known parameters. However, the option market participants could not

necessarily price options based on the true equation (1) because they essentially could

not know the true parameters of (1) due to limited information or might misestimate the

set of parameters due to parameter uncertainty. That is to say that the option market

participants might believe the another set of parameters that are not necessarily true
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while they try to estimate the true dynamics (1) based on historical market informa-

tion. In this paper we assume that the available information set for the representative

option market maker at time t is given as a sigma-algebra Gt ≡ σ{W 1
s , W 2

s |s ≤ t} ∨ N
and suppose that the representative option market maker estimates the another set of

parameters θ̃t ≡ E[θt | Gt], η̃t ≡ E[ηt | Gt], and ρ̃t ≡ E[ρt | Gt] for the drift of the volatility

process, the diffusion coefficient of the volatility process, and the correlation between

volatility changes and changes in the exchange rate, respectively. The parameters of θ̃t,

η̃t, and ρ̃t may not be equal to the parameters of θt, ηt, and ρt, respectively, because

θt, ηt, and ρt are not necessarily adapted to the filtration {Gt}t≥0 (They are adapted

only to the filtration {Ft}t≥0). Under such condition, it is natural to assume that the

representative option market maker prices options based on the following another model

for an exchange rate process S̃t
3 :

dS̃t

S̃t

= µtdt + σ̃t

√
1 − ρ̃2

t dW 1
t + σ̃tρ̃tdW 2

t ,

dσ̃t = θ̃tdt + η̃tdW 2
t .

(6)

The quoted option price at time t determined by the representative option market

maker which is consistent with the model (6) is denoted by

CM
t ≡ G(t, S̃t, σ̃t) ≡ e−rd(T−t)EQ[max(S̃T − K, 0) | Gt],

4 where G is a C1,2,2-function that satisfies the following pricing equation:

1

2
σ2

t S
2
t

∂2G

∂S̃2
(t, S̃t, σ̃t) +

1

2
η̃2

u

∂2G

∂σ̃2
(t, S̃t, σ̃t)

+ ρ̃tη̃tσtSt
∂2G

∂S̃∂σ̃
(t, S̃t, σ̃t) + (rd − rf )St

∂G

∂S̃
(t, S̃t, σ̃t)

+ (θ̃t − λt[σ])
∂G

∂σ̃
(t, S̃t, σ̃t) +

∂G

∂t
(t, S̃t, σ̃t) − rdG(t, S̃t, σ̃t) = 0.

(7)

Due to such parameter uncertainty on the volatility dynamics introduced above, the

option market participants try to hedge according to not the true function F but the

misspecified function G, and this fact leads to the following proposition:

Proposition 1 If the representative option market maker tries to hedge based on the

misspecified function G, then the expectation of the delta-hedged gain and loss from time

t to t+τ , ΠG
t,t+τ , for the market maker, that is, EP[ΠG

t,t+τ ], is represented by the following

3We assume that the SDE of (6) has a strong solution for S̃t under the parameters of θ̃t, η̃t, and ρ̃t.
4The notation of CM

t (or CTP
t ) is in line with Galai[1983].
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formula:

EP[ΠG
t,t+τ

]
=

∫ t+τ

t

EP
[1

2
(η2

u − η̃2
u)

∂2G

∂σ̃2
(u, S̃u, σ̃u)

+ (ρuηu − ρ̃uη̃u)σuSu
∂2G

∂S̃∂σ̃
(u, S̃u, σ̃u) + (θu − θ̃u)

∂G

∂σ̃
(u, S̃u, σ̃u)

]
du

+

∫ t+τ

t

EP
[
λu[σ]

∂G

∂σ̃
(u, S̃u, σ̃u)

]
du.

(8)

Proof See the Appendix. ¤

An interpretation for the expected DHGL (8) is given as follows. If the price process of

an underlying exchange rate assumed by the representative option market maker coincide

with the true price process, that is to say, θt = θ̃t, ηt = η̃t and ρt = ρ̃t, then the first term

in the right side of (8) equals zero and the expected DHGL under the physical measure

P will be represented as

EP[ΠG
t,t+τ

]
=

∫ t+τ

t

EP[λu
∂G

∂σ̃
(u, S̃u, σ̃u)

]
du.

Thus, the expected DHGL will be perfectly determined only by the level of the volatility

risk premium λt. In addition to the above assumption, if we assume a linear form of

λu ≡ λσu（λ ∈ R1）for the volatility risk premium as well as the stochastic volatility

model proposed by Heston[1993], the sign of the expected DHGL will coincide with the

sign of the volatility risk premium parameter λ because σu > 0 and ∂Cu

∂σ̃u
> 0. But, if the

parameters for the representative option market maker, θ̃t, η̃t and ρ̃t, are not equal with

those of true parameters in (1) (i.e. θt, ηt and ρt), the sign and the magnitude of the

expected DHGL will be affected by the parameter uncertainty term represented as the

first term in the right side of (8) as well as the volatility risk premium term.

Let us provide a proposition related to the second term in the right side of (8) for

the purpose of obtaining a more testable representation of the expected DHGL.

Proposition 2 If CM
t [λu] denotes the time-t call option price which is consistent with

the underlying exchange rate process (6) and the equivalent martingale measure Q[λu],

the following inequation can be derived:

CM
t [0] − CM

t [λu] ≤ (≥)

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du ≤ (≥)

(
1 + rd(T − t)

)(
CM

t [0] − CM
t [λu]

)
,

where λu ≥ (≤)0. Moreover, if we are able to assume rd ≈ 0, then this inequation can

be further simplified to the approximation presented below:

CM
t [0] − CM

t [λu] ≈
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du. (9)

Proof See the Appendix. ¤
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Under the zero interest rate financial policy in Japan after the year of 2000, we are

allowed to consider rd to be approximately zero. So we can assume that (9) will be

well-suited for the exchange rates whose base currency is the Japanese Yen.

Substituting the approximation of (9) for (8), an explicit representation of expected

DHGL for the representative option market maker can be derived as follows:

EP[ΠG
t,t+τ

]
≈

∫ t+τ

t

EP
[1

2
(η2

u − η̃2
u)

∂2G

∂σ̃2
(u, S̃u, σ̃u)

+ (ρuηu − ρ̃uη̃u)σuSu
∂2G

∂S̃∂σ̃
(u, S̃u, σ̃u) + (θu − θ̃u)

∂G

∂σ̃
(u, S̃u, σ̃u)

]
du

+ CM
t [0] − CM

t [λu].

(10)

We will simulate the DHGLs with historical market data and estimate the left side of

(10) empirically in the following section. So if we can valuate the second term in the right

side of (10) in each period, we will be able to provide a contribution analysis of the effect

of parameter uncertainty and the effect of the volatility risk premium on the expected

DHGL based on (10) empirically. In this paper, we assume that the representative option

market maker determines option market prices being consistent with (6) by estimating

the set of parameters in (6), that is to say, θ̃t, η̃t, and ρ̃t, based on historical market price

data. Thus under the assumption stated above, if we can estimate the set of parameters in

(6) with historical market price data and calibrate the volatility risk premium implied in

option market prices in each period, we will be able to provide a contribution analysis on

the expected DHGL explicitly. An estimation strategy for θ̃t, η̃t, and ρ̃t will be described

in the next section. In the next subsection, we provide a calibration methodology for the

volatility risk premium parameter implied in option market prices in each period with

estimated parameters of θ̃t, η̃t, and ρ̃t.

Hereinafter we assume θt ≡ −kσt, ηt ≡ v, ρt ≡ ρ, θ̃t ≡ −k̃σt, η̃t ≡ ṽ, and ρ̃t ≡ ρ̃ (k,

v, ρ, k̃, ṽ, and ρ̃ are constants), that is to say, the stochastic volatility model proposed

by Heston[1993] and investigate the expected DHGL represented by (10) in detail under

such assumptions. Heston[1993] also assumes linear form of λt[σ] ≡ λσt for the volatility

risk premium and we are also assume that form in line with Heston[1993].

2.2 Estimation for the Volatility Risk Premium

As mentioned above, we assume that the representative option market maker prices

options based on the model under the assumptions of θ̃t ≡ −k̃σt, η̃t ≡ ṽ, and ρ̃t ≡ ρ̃ in

(6), or

dS̃t

S̃t

= (rd − rf )dt + σ̃t

√
1 − ρ̃2dW 1

t + σ̃tρ̃dW 2
t ,

dσ̃t = −k̃σ̃tdt + ṽdW 2
t .

(11)
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If we assume the formula of the volatility risk premium as λt ≡ λσ̃t (λ ∈ R), that is to

say, a linear form on the volatility, (11) will be rewrited as below under the risk neutral

measure Q[λσ̃t],

dS̃t

S̃t

= (rd − rf )dt + σ̃t

√
1 − ρ̃2dW̃ 1

t + σ̃tρ̃dW̃ 2
t ,

dσ̃t = −(k̃ + λ)σ̃tdt + ṽdW̃ 2
t ,

(12)

where W̃t ≡
(
W̃ 1

t , W̃ 2
t

)t

is two-dimensional Brownian motion under Q[λσ̃t] whose each

component is represented as below:

W̃ 1
t ≡ W 1

t +

∫ t

0

νudu and W̃ 2
t ≡ W 2

t + λ

∫ t

0

σ̃udu.

Under (12), we can derive the expectation of instantaneous variance at time t under

Q ≡ Q[λσ̃t],

EQ
t [σ̃2

u] = σ̃2
t exp(−2(k̃ + λ)(u − t)) +

ṽ2

2(k̃ + λ)

(
1 − exp(−2(k̃ + λ)(u − t))

)
, t ≤ u.

Thus the expectation of realized variance RVt,T in the period of [t, T ] under Q will be

represented as below,

EQ
t [RVt,T ] = EQ

t [
1

T − t

∫ T

t

σ̃2
udu] =

1

T − t

∫ T

t

EQ
t [σ̃2

u]du

=
ṽ2

2(k̃ + λ)
+

exp(−2(k̃ + λ)T ) − exp(−2(k̃ + λ)t)

2(k̃ + λ)(T − t)

( ṽ2

2(k̃ + λ)
− σ̃2

t

)
.

(13)

On the other hand, Carr and Wu[2009] provide the formula for the risk neutral expected

value of return variance which can be well approximated with the value of a particular

portfolio of options 5.

Proposition 3 (Carr and Wu(2009)) Under no arbitrage, the time-t risk-neutral ex-

pected value of the return quadratic variation of an asset over horizon [t, T ] can be approx-

imated by the continuum of European out-of-the-money option prices across all strikes
5Carr and Wu[2009] assume that the futures price Ft solves the following stochastic differential

equation,

dFt = Ft−σt−dWt +
∫

(−∞,∞)\0
Ft−

(
ex − 1

)[
µ(dx, dt) − νt(x)dxdt

]
(see Carr and Wu[2009] for details on a notation). The equation represented above models the futures
price change as the summation of the increments of two orthogonal martingales: a purely continuous
martingale and a purely discontinuous (jump) martingale. This decomposition is generic for any con-
tinuous time martingales. So, in general, Proposition 2 should be stated including the effect of jump
component. But, in this paper, we only assume a continuous martingale in order to represent an un-
derlying exchange rate process, so we leave the term induced by the jump component out of (14) in
Proposition 2.
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K > 0 and at the same maturity date T

EQ
t [RVt,T ] =

2

T − t

∫ ∞

0

Θt(K,T )

Bt(T )K2
dK, (14)

where Bt(T ) denotes the time-t price of a bond paying one dollar at T, Θt(K,T ) denotes

the time-t value of an out-of-the-money option with strike price K > 0 and maturity

T ≥ t (a call option when K > Ft and a put option when K ≤ Ft).

Proof See proof of Proposition1 in Carr and Wu[2009]. ¤

Using the set of parameters in (6) and option prices Θt(K,T ) quoted in an option market,

we can explicitly estimate λ based on the following equation

2

T − t

∫ ∞

0

Θt(K,T )

Bt(T )K2
dK =

ṽ2

2(k̃ + λ)

+
exp(−2(k̃ + λ)T ) − exp(−2(k̃ + λ)t)

2(k̃ + λ)(T − t)

( ṽ2

2(k̃ + λ)
− σ̃2

t

)
,

(15)

which can be derived with (13) and (14). Thus, using the λ estimated with the equation

(15), we can calculate CM
t [0]−CM

t [λu], the second term in the right hand side of (10), at

each time t using the explicit closed formula for the European-type call option proposed

by Heston[1993]:

CM
t [λσ̃t] = StP1 + e−rτKP2,

where

Pj =
1

2
+

1

π

∫ ∞

0

Re

[
e−

√
−1φln(K)Fj√
−1φ

]
dφ,

Fj = eC+Dσ2
t +

√
−1φln(St),

C = (rd − rf )τφ
√
−1 +

1

4

[
(βj − 2ρ̃ṽφ

√
−1 + h)τ − 2ln

(1 − gehτ

1 − g

)]
,

D =
βj − 2ρ̃ṽφ

√
−1 + h

4ṽ2

( 1 − ehτ

1 − gehτ

)
,

g =
βj − 2ρ̃ṽφ

√
−1 + h

βj − 2ρ̃ṽφ
√
−1 − h

,

h =

√
(2ρ̃ṽφ

√
−1 − βj)2 − 4ṽ2(2ujφ

√
−1 − φ2), (j = 1, 2)

and

τ = T − t, u1 =
1

2
, u2 = −1

2
, β1 = 2k̃ + λ − 2ρ̃ṽ, β2 = 2k̃ + λ.

(16)

Needless to say, we can also derive the closed formula for the European-type put option

by using (16) and the put-call parity relation and will use these closed formulas for

pricing currency options in the following empirical simulations.
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3 Data and Methodology for an Empirical Implementation

3.1 Description of the OTC Currency Option Market and Data

In our empirical study, we examine the expected DHGL and its contribution analysis with

the USD-JPY spot exchange rate and the USD-JPY currency options with maturities

of one month traded on the OTC market. The OTC currency option market has some

special features and conventions. First, option prices in the OTC market are quoted in

terms of deltas and implied volatilities instead of strikes and money prices, as in the

organized option exchanges. At the time of settling a given deal, the implied volatility

quotes are translated to money prices using the Garman-Kohlhagen formula, which is

the equivalent of the Black-Scholes formula for currency options. This arrangement is

convenient for option dealers in that they do not have to change their quotes every time

the spot exchange rate moves. However, it is important to note that this does not mean

that option dealers necessarily believe that the Black-Scholes assumptions are valid.

They use the formula only as a one-to-one nonlinear mapping between the volatility

delta space (where the quotes are made) and the strike premium space (in which the

final specification of the deal is expressed for the settlement). Second, most transactions

in the market involve option combinations. The popular combinations are straddles,

risk reversals, and strangles. Among these, the most liquid combination is the standard

delta-neutral straddle contract, which is a combination of a call and a put with the same

strike. The strike price is set, together with the quoted implied volatility space, such

that the delta of the straddle computed on the basis of the Garman-Kohlhagen formula

is zero.

Because the standard straddle is by design delta neutral on the deal date, its price

is not sensitive to the market price of the underlying foreign currency. However, it

is sensitive to changes in volatility. Because of its sensitivity to volatility risk, delta-

neutral straddles are widely used by participants in the OTC market to hedge and trade

volatility risk. If the volatility risk is priced in the OTC market, then delta-neutral

straddles are the best instruments through which to observe the risk premium. For this

reason, Cocal and Shumway[2001] use delta-neutral straddles in their empirical study of

expected returns on equity index options and find that a volatility risk premium is priced

in the equity index option market.

We use the WM/Reuter closing spot rate for the exchange rate data, the LIBOR

1M interest rates for the domestic (Japan) and the foreign (United States of America)

interest rates, and quoted implied volatility data from Bloomberg. The implied volatility

data is from the European type put and call OTC currency options with maturities of

one month and strike prices of 5 delta, 10 delta, 15 delta, 25 delta, 35 delta and ATM,

respectively. In the following empirical simulation, we price the options using bid prices

quoted in the actual market at each time point in order to take account of transactions

12



costs when simulating the profit and loss generated by a delta-neutral hedging strategy

with a short position of the European option. Our data sample starts in October 2003

(because of data availability of the implied volatility in the USD-JPY currency option

market) and ends in June 2010.

Fig.3, Fig.4 and Fig.5 show the time series data for the USD-JPY WM/Reuter closing

spot rate, the ATM implied volatility for the USD-JPY European put option, and the

mid-bid price spread of the ATM implied volatility which indicates the level of trans-

actions costs for selling strategies of the European ATM options at each time point,

respectively. Table 7 provides descriptive statistics for the implied volatilities in the pe-

riod from October 2003 to June 2010. In this table we can see the feature of ”volatility

skew”, which indicates that the implied volatilities for OTM puts are higher than those

for OTM calls during the period under consideration.

3.2 Parameter Estimation

for the Heston[1993] Stochastic Volatility Model

In this paper, we estimate a set of parameters for the Heston[1993] stochastic volatil-

ity model specified in equation (6) with the maximum likelihood method proposed by

Aı̈t-Sahalia[2001] and Aı̈t-Sahalia and Kimmel[2007]. Aı̈t-Sahalia and Kimmel[2007]

provide an approximation formula for the likelihood function using the Hermite series

expansion of the transition probability density of the Heston[1993] stochastic volatility

model and propose a methodology for estimating the parameters of multivariate diffu-

sion processes via the maximum likelihood method with discrete-sampled price data.

They derive a closed form likelihood function used explicitly to estimate parameters of a

two-dimensional diffusion process consisting of an underlying asset price and its instan-

taneous volatility or the option price associated with it. In this study, we use a historical

20-day realized volatility as a proxy for the instantaneous volatility and estimate the

model parameters based on the maximum likelihood method proposed by Aı̈t-Sahalia

and Kimmel[2007]. We update the model parameters daily using the historical data of

1,750 days with a rolling estimation procedure.

3.3 Estimation of the Volatility Risk Premium

To estimate the volatility risk premium parameter λ with equation (15), we need to

calculate the integral term in that equation by a discretization of that integral. As

mentioned in the previous subsection, we have only a grid of 11 implied volatility points

in terms of the strike price, so that we first interpolate the implied volatilities at different

moneyness levels with the polynomial approximation methodology proposed by Brunner

13



and Hafner[2003] to obtain a fine curve of implied volatilities 6. Then we obtain the value

of the integral in (15) by applying the numerical integral technique. We calculate Bt(T )

in (15) as exp(−rd(T − t)), which is a zero coupon bond price whose maturity date is T .

3.4 Estimation of the Expected DHGL

We employ an empirical analysis based on a historical simulation to estimate the mag-

nitude of the expected DHGL for the delta-hedged option strategy with a short position

of the one-month ATM-forward straddle 7 or the one-month OTM delta-25 put. In par-

ticular, beginning on our simulation on the date of October 31, 2003, we compute the

DHGLs for those of the strategies at the end date after one month and repeat the same

computations on the following day after October 31, 2003. The final simulation starts

on May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results for

1,717 samples for each delta-hedged option strategy through those iterated simulations.

We employ the Garman-Kohlhagen model, as an extension of the Black-Scholes model

to currency options, to compute the delta of the short option positions for tractability,

even though the delta computed from the Garman-Kohlhagen model may differ from the

delta computed from a stochastic volatility model. If we use C to denote the European

call option price on an exchange rate, P as the European put option price, S0 as the

spot rate level on that exchange rate, rf as the foreign risk free rate, rd as the domestic

risk free rate, σ as the volatility, T as the maturity, and N(·) as the cumulative standard

normal distribution function, Garman-Kohlhagen[1983] provides the closed formula for

the prices of European currency options as follows:

C = S0e
−rf T N(d1) − Ke−rdT N(d2) , P = Ke−rdT N(−d2) − S0e

−rf T N(−d1),

where

d1 =
ln(S0

K
) + (rd − rf + σ2

2
)

σ
√

T
, d2 =

ln(S0

K
) + (rd − rf − σ2

2
)

σ
√

T
= d1 − σ

√
T . (17)

If the prices of European currency options are represented as described above, the delta

values of call and put options are computed with the following respective formulas

4call = e−rf T N(d1) , 4put = e−rf T
(
N(d1) − 1

)
.

6Brunner and hafner[2003] approximate the implied volatility σT
t (K), whose the strike price is K

and the maturity date is T , as a polynomial as follows; σT
t (K) = β0 + β1M + β2M

2 + Dβ3M
3, where

D ≡ 0(ifM ≤ 0),≡ 1(ifM > 0) and M ≡ log
(

K
F T

t

)
/
√

T − t, under the definition that FT
t is a forward

rate whose the maturity date is T at each time t.
7The ATM-forward straddle contract is a combination of a call and a put option with the same strike

price of ATM forward rate and the same maturity to the underlying forward contract.
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Bakshi and Kapadia[2003] and Low and Zhang[2005] provide a simulation exercise that

shows using the Black-Scholes delta-hedge ratio instead of the stochastic volatility coun-

terpart has a negligible effect on the DHGL results, and they insist that the empirical

analysis results regarding the existence and the sign of the volatility risk premium would

not be affected by the decision regardless of which model is used to compute the delta.

We also use the Garman-Kohlhagen model to compute the delta in line with the studies

of Bakshi and Kapadia[2003] and Low and Zhang[2005]. In our delta-neutral hedge sim-

ulations, the volatility σ in the equation (17) is estimated using historical daily return

data of 20 days.

We rebalance the delta-hedged option portfolio daily and measure the DHGL ΠG
t,T in

the period from the contract date t to the maturity date T using the following formula:

ΠG
t,T = CM

t − CM
T −

N−1∑
n=0

∆tn(Stn − Stn+1) +
N−1∑
n=0

(rdC
M
t − (rd − rf )∆tnStn)

T − t

N
,

where t0 = t, t1, t2, · · · , tN = T are time steps during the period [t, T ] and 4tn is the

delta value of the option portfolio. In this study, we do not take transactions costs in the

delta-neutral hedge operations with spot contracts into consideration because the effects

of those transactions costs to the DHGL results are actually negligible due to the high

liquidity and the low level of such costs in the USD-JPY exchange rate market. 8.

4 An Empirical Analysis

4.1 Estimation Result for the Model Parameters

Fig.6, Fig.7 and Fig.8 in Appendix show the time series results of the estimated pa-

rameters, κ̃, ṽ, and ρ̃, respectively, in (11), which represents the Heston[1993] stochastic

volatility model. These parameters are estimated with the maximum likelihood method-

ology proposed by Aı̈t-Sahalia and Kimmel[2007]. In particular, Fig.8 shows the time

series of estimated ρ̃, which is the correlation between volatility changes and changes in

the exchange rate, and we find that the level of ρ̃ is almost negative during the period

under consideration.

Fig.1 shows the time series of the volatility risk premium parameter λ estimated with

(15). The λ is also almost negative during the period under consideration and the result

of negative market volatility risk premium is consistent with the result provided by Low

and Zhang[2005]. However, this time series of the λ does not have a time consistency

and it moves to negative values significantly after the Sub-prime crisis in 2007 followed

by the largest negative period during the Lehman-crisis between September 2008 and

October 2008.
8As we mentioned before, we take account of transactions costs only in selling the option contracts

in our empirical study.
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We also show the statistical significance on the level of the volatility risk premium

parameter λ exhibited in Fig.1. Table 1 summarizes the statistics for the λ. The top

row of Table 1 shows the statistics on the λ for overall period between October 31, 2003

to May 31, 2010, and the middle and the bottom rows show the same statistics for the

first half period between October 31, 2003 and December 29, 2006 and the following half

period between January 2, 2007 and May 31, 2010, respectively. The second column of

Table 1 shows the number of observations in each period. In the third column, we show

the percentage of the λ values that are negative, and in the period from January 2, 2007

to May 31, 2010, we can find that almost all the λ have negative values. The percentage

of negative values is 94.2 ％ in that period. The unconditional means and the standard

deviations of the λ are listed in the fourth and the fifth columns of Table 1 respectively.
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Fig. 1: The time series of the volatility risk premium parameter λ

This figure shows a time series result of the λ estimated at each time point based on the equation (15) from October

31, 2003 to May 31, 2010. The model parameters in the equation (11) are estimated by the maximum liklihood method

proposed by Aı̈t-Sahalia and Kimmel[2007], and we update the model parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure. We calculate the integral term in the equation (15) by a discretizaion

and the numerical integral technique. We interpolate implied volatilities at different moneyness levels with a polynomial

approximation methodology proposed by Brunner and hafner[2003] to obtain a fine curve of implied volatilities.

The sample mean is negative for each period, while the high standard deviations

of the estimated λ make the means appear to not be significantly different from zero.

However, it is misleading to use the unconditional standard deviation to test the mean

because serial correlation in the time series of λ can cause the standard deviation to be

a biased measure of the actual random error. The next three columns in Table 1 show

that the first three autocorrelation coefficients are quite large and decay slowly. This

result indicates that the time series may follow an autoregressive process. We also show
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the partial autocorrelation coefficients in Table 1. The first-order partial autocorrela-

tion coefficient is large in all cases, while the second- and third-order autocorrelation

coefficients become much smaller. The pattern for both autocorrelation coefficients and

partial autocorrelation coefficients suggests the fitting of an autoregressive process of

order three (AR(3)) to the time series of the λ. The AR(3) process for the volatility risk

premium parameter can be represented by the following model

λt = α + β1λt−1 + β2λt−2 + β3λt−3 + εt,

where λt is the time-t volatility risk premium parameter and εt is a white noise process.

Its unconditional mean is given by the following formula

E[λt] =
α

1 − β1 − β2 − β3

,

which implies that the null hypothesis of a zero unconditional mean is equivalent to the

null hypothesis that the intercept of the AR(3) process is equal to zero.

Table 1: Summary statistics on the volatility risk premium parameter λ

Period

No.

of

obs.

％ of

λ <

0

Spl.

Mean

Spl.

Std.

Dev.

(1) Auto Corr. (2) Partial Auto Corr. (3) AR3 Int.

Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 α pV al

Total 1,717 75.3 ％ -0.686 0.831 0.989 0.983 0.976 0.989 0.171 0.037 -0.006 0.046

(A) 826 55.0 ％ -0.068 0.324 0.957 0.925 0.897 0.957 0.099 0.053 -0.001 0.362

(B) 891 94.2 ％ -1.260 0.742 0.979 0.965 0.951 0.979 0.169 0.033 -0.025 0.004

The sample period is from October 31, 2003 to May 31, 2010. Period (A) in this table is the first half period from

October 31, 2003 to December 29, 2006 and Period (B) is the following half period from January 2, 2007 to May 31, 2010.

The second column of this table shows the number of observations in each time series. In the third column, we present the

percentage of the λ which has a negative value. The unconditional means and standard deviations of the λ are respectively

exhibited in the fourth and the fifth columns in this table.

We estimate the parameters of the AR(3) process introduced above and show the

estimated intercept and its p-value for the t-statistic in the last two columns of Table

1. The intercept is significantly negative at the 5％ level in overall period under con-

sideration and significantly negative at the 1％ level during the second half period from

January 2, 2007 to May 31, 2010, whereas it is insignificant, although negative, during

the first half period from October 31, 2003 to December 29, 2006. These results, that is

to say that the volatility risk premium parameter λ is negative, are consistent with Low

and Zhang[2005] in which provides an evidence of the negative volatility risk premium

in currency option markets, but are also clearly show that the volatility risk premium

parameter λ in the USD-JPY currency option market does not have a time consistency

but essentially has a stochastic nature. This feature of time-varying volatility risk pre-

mium parameter (or time-varying volatility risk premium) in currency option markets is

not found by Low and Zhang[2005] and we should notice that the existence of volatility
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risk premium in the USD-JPY currency option market is not necessarily significant at

any time.

In equilibrium, we can obtain an explicit relation between the risk aversion parameter

for the representative agent and the volatility risk premium parameter. According to

Heston[1993],

−λσ̃t = Covt

(dΛt

Λt

, dσ̃t

)
, (18)

where Λt is the stochastic discount factor process in the dynamic equilibrium setting and

in the case that the utility function of the representative agent assumes the following

power utility form,

Ut = exp(−δt)
S1−γ

t

1 − γ
,

where δ is the subjective discount factor and γ is the risk aversion parameter, we can

obtain a representation of Λt = exp(−δt)S−γ
t easily. Thus, by (11) and Ito’s lemma, the

following equation can be derived:

Covt

(dΛt

Λt

, dσ̃t

)
= −γρ̃ṽσ̃t. (19)
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Fig. 2: Risk aversion parameter γ

The power utility is assumed to the utility function for the representative agent, and this figure shows the time series

of the risk aversion parameter estimated by the relation of γ = λ/(ρ̃ṽ) during the period from October 2003 to May 2010.

The model parameters in the equation (11) are estimated by the maximum liklihood method proposed by Aı̈t-Sahalia

and Kimmel[2007] and we update the model parameters daily based on historical 1,750 days daily data with a rolling

estimation procedure. The value of λ is from the result exhibited in Fig.1.

Equations of (18) and (19) lead to an explicit relation between the volatility risk

premium parameter λ and the risk aversion parameter γ, that is to say, γ = λ/(ρ̃ṽ).
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This equation enables us to employ an empirical analysis to estimate the time series of

the γ under the equilibrium mentioned above. Fig.2 shows the estimation result on the

time series of the γ. This figure shows that it moves to significantly positive values after

the sub-prime crisis in 2007 followed by the longest positive period during the Lehman

crisis from September 2008 to October 2008. Then, it moves down slowly but seems

to rise again during the period of the European financial crisis from April 2010 to May

2010.

4.2 A Contribution Analysis on the Expected DHGL

To demonstrate a contribution analysis on the expected DHGL represented by (10), we

first calculate CM
t [0]−CM

t [λ], which is the second term on the right side of the equation

(10), using the set of estimated parameters (k̃, ṽ, ρ̃) and the volatility risk premium

parameter λ shown in Fig.1. Combining this calculation result of CM
t [0] − CM

t [λ] with

the DHGL estimated with simulated delta-hedged option returns according to (10), the

effect of parameter uncertainty, the first term on the right side of the equation (10), can

be estimated.

Table 2: Contribution Analysis for the Expected Delta-hedged Gain Loss

(1)

Interval

of λs

(2)

No. of

Obs.

(3)

Mean

of λ

(4) Expected DHGL: (5) Expected DHGL:

ATM Straddle Short OTM delta-25 Put Short

(4-1)

RP

(4-2)

PU

(4-3)

Total

(5-1)

RP

(5-2)

PU

(5-3)

Total

Overall 1,717 -0.69 9.7 -3.8 5.9 3.6 2.2 5.8

λ ∈ (−4,−3.5] 4 -3.76 89.3 73.2 162.4 32.8 53.1 86.0

λ ∈ (−3.5,−3] 18 -3.15 66.6 37.7 104.3 24.3 63.4 87.6

λ ∈ (−3,−2.5] 25 -2.78 59.2 62.9 122.1 21.8 57.1 78.9

λ ∈ (−2.5,−2] 62 -2.22 34.5 12.7 47.2 12.7 19.5 32.2

λ ∈ (−2,−1.5] 186 -1.73 25.5 8.2 33.7 9.5 -0.6 8.9

λ ∈ (−1.5,−1] 304 -1.27 15.2 4.9 20.1 5.7 -3.3 2.4

λ ∈ (−1,−0.5] 233 -0.75 7.8 -3.1 4.7 2.9 0.9 3.7

λ ∈ (−0.5, 0] 461 -0.03 0.6 -26.2 -25.6 0.2 1.6 1.9

λ ∈ (0, +0.5] 388 0.17 -1.3 -5.4 -6.7 -0.4 3.6 3.2

λ ∈ (+0.5, +1] 36 0.62 -4.2 -9.9 -14.1 -1.5 -0.5 -2.0

Starting on our simulation at the date of October 31, 2003, we compute the DHGL of each strategy at the end date

after one month and repeat the same computations on the following day after October 31, 2003. The final simulation starts

at May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results of 1,717 samples for each delta-hedged

option strategy through those iterated simulations. We employ the Garman-Kohlhagen model, as an extension of the

Black-Scholes model to currency options, to compute the delta of the short option positions for tractability. In this table,

”No. of Obs.” means the number of samples in each interval for the λ, and ”Mean of λ” shows the average of the λ in

each interval. ”RP” shows the contribution induced by the volatility risk premium to the total expected DHGL and ”PU”

shows the contribution induced by parameter uncertainty to the total expected DHGL. These attribution results shown

in this table are monthly based basis point returns.

Table 2 reports the contribution of the volatility risk premium (”RP” in Table2),

which is represented by the second term on the right side of the equation (10), and the

19



contribution of parameter uncertainty (”PU” in Table2), which is represented by the

first term on the right side of the equation (10), to the expected DHGL estimated by

our historical simulation. To standardize the influence of the difference of the exchange

rate level at each time point, we calculate the return represented as ΠG
t,t+τ/St for each

simulation and recognize this return as a proxy for the DHGL at each time point. To

verify the effects of the strike price on the results of the contribution analysis for the

expected DHGL, we examine historical simulations of short positions of the OTM delta-

25 1M puts as well as the ATM 1M straddles. We segment the results into ten levels in

terms of the level of volatility risk premium parameter λ at each time point to ensure the

time dependencies of this attribution analysis. In this table, ”No. of Obs.” means the

number of samples and ”Mean of λ” shows the average of the λ in each interval. ”RP”

shows the contribution induced by the volatility risk premium to the total expected

DHGL and ”PU” shows the contribution induced by parameter uncertainty to the total

expected DHGL. These attribution results shown in this table are monthly based basis

point returns.

In this table, it is clear that the total level of expected DHGL increases in proportion

as the volatility risk premium parameter λ decreases for both the delta-hedged ATM

straddle short strategy and the delta-hedged OTM delta-25 put short strategy, and both

effects of volatility risk premium and parameter uncertainty on the total expected DHGL

make a significant impact on that variation. This result also indicates that, in the case of

λ ≤ −2.5, the total expected DHGL is more than 100bp per month for the delta-hedged

ATM straddle short strategy and approximately 80bp per month for the delta-hedged

OTM delta-25 put short strategy. In particular, the effect of parameter uncertainty on

the total expected DHGL seems to be more significant than the effect of volatility risk

premium for the OTM delta-25 put strategy. One of the most important implications of

this result is that the sign and the level of the expected delta-hedged option returns do

not generally explain the existence of the volatility risk premiums. There are additional

important factors that make an impact on delta-hedged option returns such as parameter

uncertainty, rendering standard hedging-based tests on volatility risk premiums explored

by, for example, Bakshi and Kapadia[2003] and Low and Zhang[2005], unreliable. We

also find a large negative expected DHGL when the λ is in the interval between -0.5 and

0 for the case of ATM straddle short strategy. This result is generated almost entirely

by the effect of parameter uncertainty and is especially affected by several jumps in the

USD-JPY exchange rate market during the period of the European financial crisis from

April 2010 to May 2010.

To understand the statistical significance of the expected DHGL shown in Table 2, we

employ the same methodology as that used for the analysis in Table 1. Table 3 and Table

4 show the statistical significance of the total expected DHGL, the effect of volatility risk

premium on the total expected DHGL, and the effect of parameter uncertainty on the
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total expected DHGL. In particular, Table 3 shows the result for ATM straddle short

strategy, and Table 4 shows the result for OTM delta-25 put short strategy. Period (A)

in these tables is the first term from October 31, 2003 to December 29, 2006 and Period

(B) is the following term from January 2, 2007 to June 30, 2010. The second column

lists the number of observations in each time series. In the third column, we report the

percentage of the DHGL which has a positive value. The unconditional means of the

DHGL are listed in the fourth column. The sample means and intercepts (α) shown in

these tables are monthly based basis point returns.

In Table 3, we find that the p-value for the intercept of the AR3-process for the total

expected DHGL is 0.222 during the entire period, so that the statistical significance of

the total expected DHGL does not seem to be high. However, if we focus on Period (B),

the p-value on the intercept of the AR3-process decreases to 0.072 and it is significantly

different from zero at the 10％ level. This result seems to be induced by the statistical

significance of the volatility risk premium during Period (B) (see the middle panel in

Table 3).

In contrast, the statistical significance of the effect of parameter uncertainty on the

total expected DHGL does not seem to be high during either period. Although parameter

uncertainty might affect the level of the total expected DHGL, the statistical significance

does not seem to be high in this empirical analysis.

Table 3: Summary Statistics of the DHGL for the ATM Straddle Short Strat-

egy

Period
No. of

Obs.

％ of

Pos.

Sample

Mean

(1) Auto Corr. (2) Partial Auto Corr. (3) AR3 Int.

Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 α pV al

Panel 1 : DHGLs (RP+PU)

Total 1,717 55.3 ％ 5.9 0.875 0.779 0.698 0.875 0.059 0.023 0.7 0.222

(A) 826 47.5 ％ -8.3 0.861 0.775 0.704 0.861 0.133 0.044 -1.0 0.862

(B) 891 62.6 ％ 19.1 0.874 0.772 0.686 0.874 0.036 0.017 2.4 0.072

Panel 2 : The effects of volatility risk premium (RP)

Total 1,717 75.3 ％ 9.7 0.986 0.979 0.971 0.986 0.211 0.046 0.1 0.055

(A) 826 55.0 ％ 0.8 0.951 0.920 0.894 0.951 0.154 0.082 0.0 0.268

(B) 891 94.2 ％ 17.9 0.979 0.966 0.954 0.979 0.202 0.042 0.3 0.021

Panel 3 : The effects of parameter uncertainty (PU)

Total 1,717 50.2 ％ -3.8 0.863 0.761 0.675 0.863 0.062 0.020 -0.4 0.678

(A) 826 47.0 ％ -9.1 0.862 0.779 0.709 0.862 0.137 0.045 -1.1 0.876

(B) 891 53.2 ％ 1.2 0.863 0.754 0.662 0.863 0.039 0.015 0.3 0.432

The sample period of these simulation results is from October 31, 2003 to June 30, 2010. Period (A) in this table is

the first term from October 31, 2003 to December 29, 2006 and Period (B) is the following term from January 2, 2007 to

June 30, 2010. The second column of this table lists the number of observations in each time series. In the third column,

we report the percentage of the DHGL which has a positive value. The unconditional means of the DHGL are listed in the

fourth column. The sample means and intercepts (α) shown in this table are monthly based basis point returns.

Table 4 shows the same result as Table 3 for the delta-hedged OTM delta-25 put

short strategy. In this case, the effect of parameter uncertainty on the total expected
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DHGL seems to be high relative to the delta-hedged ATM straddle short strategy (see

the bottom panel in Table 4). As a result, the statistical significance of the total expected

DHGL during the entire period also seems to be high relative to Table 3. These results

suggest that the effect of parameter uncertainty on the total expected DHGL for the

OTM delta-25 put short strategy is more significant compared with the ATM straddle

short strategy.

Table 4: Summary Statistics of the DHGL for the OTM Put Short Strategy

Period
No. of

Obs.

％ of

Pos.

Sample

Mean

(1) Auto Corr. (2) Partial Auto Corr. (3) AR3 Int.

Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 α pV al

Panel 1 : DHGLs (RP+PU)

Total 1,717 65.8 ％ 5.8 0.904 0.825 0.757 0.904 0.042 0.024 0.5 0.101

(A) 826 63.3 ％ 4.2 0.862 0.776 0.707 0.862 0.127 0.053 0.5 0.112

(B) 891 68.0 ％ 7.3 0.911 0.833 0.765 0.911 0.019 0.019 0.7 0.179

Panel 2 : The effects of volatility risk premium (RP)

Total 1,717 75.3 ％ 3.6 0.984 0.976 0.969 0.984 0.235 0.084 0.0 0.052

(A) 826 55.0 ％ 0.3 0.915 0.874 0.847 0.915 0.221 0.143 0.0 0.254

(B) 891 94.2 ％ 6.6 0.976 0.964 0.952 0.976 0.219 0.070 0.1 0.020

Panel 3 : The effects of parameter uncertainty (PU)

Total 1,717 63.2 ％ 2.2 0.900 0.818 0.746 0.900 0.039 0.022 0.0 0.294

(A) 826 63.2 ％ 3.9 0.863 0.778 0.709 0.863 0.126 0.054 0.0 0.128

(B) 891 63.2 ％ 0.7 0.906 0.824 0.752 0.906 0.016 0.017 0.1 0.447

The sample period of these simulation results is from October 31, 2003 to June 30, 2010. Period (A) in this table is

the first term from October 31, 2003 to December 29, 2006 and Period (B) is the following term from January 2, 2007 to

June 30, 2010. The second column of this table lists the number of observations in each time series. In the third column,

we report the percentage of the DHGL which has a positive value. The unconditional means of the DHGL are listed in the

fourth column. The sample means and intercepts (α) shown in this table are monthly based basis point returns.

Finally, to investigate the magnitude of the effect of parameter uncertainty on the

total expected DHGL in the pre- and post-financial crisis periods, we report a subperiod

contribution analysis for the total expected DHGL in Table 5 and Table 6 with the same

simulation results exhibited in Table 2. We divide the overall period into two periods

of pre- and post-Lehman shock: the former period is from October 2003 to September

2008 and the latter period is from October 2008 to June 2010. In Table 5, ”VRP Para.”

denotes the volatility risk premium parameter in each period. For the ATM straddle

and the OTM delta-25 put short strategy, ”Pre.” shows the option premium for each

corresponding strategy, and ”RP” and ”PU” show the contributions of the volatility

risk premium and parameter uncertainty on the total expected DHGL, respectively.

”Tot.” shows the total expected DHGL. Each value introduced above is shown in terms

of the average (”Ave.”) in each period and also in terms of the relative percentage to

the corresponding option premium (”Rel.”). The average value of the option premium

and each contribution to the total expected DHGL shown in this table are monthly

based basis point returns. We obtain our daily delta-hedged option returns by selling a

corresponding option and maintaining a delta-neutral portfolio using the spot contracts
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of the USD-JPY exchange rate until the option matures. In calculating the delta-hedged

return of the one-month option sold on a given trading day, say day 0, we use the

information for days 1 to 22, assuming that there are 22 trading days before the option

maturity date. Then, for the delta-hedged return of the one-month option sold on day

1, we use the information of day 2, day 3, up to day 23. Consequently, the delta-hedged

returns of day 0 and day 1 straddles use information from an overlapping period between

days 2 and 22. To address the concern that our evidence on a contribution analysis

for delta hedged option returns is driven by the common information in the overlapping

periods, we also construct a time-series of non-overlapping delta hedged option returns

for each option strategy. Specifically, for each option strategy, we construct a monthly

series of delta-hedged returns on the one-month options sold at the first trading day of

each month in our sample period. Because the delta-hedged returns of the beginning-of-

month option only depend on the information of the trading days in the same month,

they are non-overlapping. Table 6 reports the result for the non-overlapping returns of

each of the two delta-hedged option strategies.

Table 5: Relative Contribution Comparison of the Expected DHGL between

Pre- and Post Lehman Crisis : Based on a time-series of overlapping results

VRP

Para.

(A) ATM Straddle (B) OTM delta-25 Put

(A1) Pre. (A2) RP (A3) PU (A4) Tot. (B1) Pre. (B2) RP (B3) PU (B4) Tot.

Panel 1 : Overall Period [From October 2003 to June 2010]

(1) Ave. -1.37 256.6 9.7 -3.8 5.9 51.0 3.6 2.2 5.8

(2) Rel. - 100.0 ％ 3.8 ％ -1.5 ％ 2.3 ％ 100.0 ％ 7.0 ％ 4.4 ％ 11.4 ％

Panel 2 : Pre-Lehman Crisis [From October 2003 to September 2008]

(1) Ave. -0.89 217.9 5.1 -13.2 -8.1 42.8 1.9 -1.0 0.9

(2) Rel. - 100.0 ％ 2.4 ％ -6.1 ％ -3.7 ％ 100.0 ％ 4.4 ％ -2.3 ％ 2.0 ％

Panel 3 : Post-Lehman Crisis [From October 2008 to June 2010]

(1) Ave. -2.80 370.9 23.1 24.2 47.3 75.3 8.7 11.8 20.5

(2) Rel. - 100.0 ％ 6.2 ％ 6.5 ％ 12.7 ％ 100.0 ％ 11.5 ％ 15.6 ％ 27.2 ％

Starting on our simulation at the date of October 31, 2003, we compute the DHGL of each strategy at the end date

after one month, and repeat the same computations on the following day after October 31, 2003. The final simulation starts

at May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results of 1,717 samples through those iterated

simulations. We employ the Garman-Kohlhagen model, as an extension of the Black-Scholes model to currency options,

to compute the delta of the short option positions for tractability. In this table, ”VRP Para.” denotes the volatility risk

premium parameter in each period. ”Pre.” shows the option premium for each corresponding strategy. ”RP” and ”PU” show

the contribution of the volatility risk premium and parameter uncertainty to the total expected DHGL, respectively. ”Tot.”

shows the total expected DHGL. Each value introduced above is shown in terms of the average (”Ave.”) in each period

and also shown in terms of the relative percentage to corresponding option premium (”Rel.”). The average value of option

premium and each contribution to the total expected DHGL shown in this table are monthly based basis point returns.

We find several important pieces of evidence on delta-hedged option returns in Table

5 and 6. First, in the case of the ATM straddle short strategy, the effect of parameter

uncertainty on the total expected DHGL does not seem to be high in the overall period

from October 2003 to June 2010 because the relative value of the effect of parameter
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uncertainty to the corresponding option premium is less than 2％ in terms of the absolute

value. It is clear that the total expected DHGL in that period is well explained by

the effect of the volatility risk premium. However, we should notice that the effect of

parameter uncertainty becomes more significant in the post-Lehman shock period, that

is to say, from October 2008 to June 2010, because the relative value of that effect to the

corresponding option premium is more than 6％ and the relative contribution of that

effect to the total expected DHGL is much larger than that of the effect of the volatility

risk premium.

Second, in the case of the OTM delta-25 put short strategy, the effect of parameter

uncertainty on the total expected DHGL is more significant in the overall period from

October 2003 to June 2010, which differs from the result for the case of the ATM straddle

short strategy. In Table 6, we find that the effect of parameter uncertainty is much larger

than the effect of the volatility risk premium in the overall period, and in the post-Lehman

shock period, that is, from October 2008 to June 2010, the effect of parameter uncertainty

on the total expected DHGL in terms of the relative value to the corresponding option

premium becomes 13％ or more.

Table 6: Relative Contribution Comparison of the Expected DHGL between

Pre- and Post Lehman Crisis : Based on a time-series of non-overlapping

results

VRP

Para.

(A) ATM Straddle (B) OTM delta-25 Put

(A1) Pre. (A2) RP (A3) PU (A4) Tot. (B1) Pre. (B2) RP (B3) PU (B4) Tot.

Panel 1 : Overall Period [From October 2003 to June 2010]

(1) Ave. -1.41 258.7 9.6 0.0 9.6 51.8 3.6 3.7 7.3

(2) Rel. - 100.0 ％ 3.7 ％ 0.0 ％ 3.7 ％ 100.0 ％ 7.0 ％ 7.2 ％ 14.1 ％

Panel 2 : Pre-Lehman Crisis [From October 2003 to September 2008]

(1) Ave. -0.92 218.3 5.1 -12.1 -7.0 43.2 1.9 1.5 3.4

(2) Rel. - 100.0 ％ 2.3 ％ -5.6 ％ -3.2 ％ 100.0 ％ 4.3 ％ 3.5 ％ 7.8 ％

Panel 3 : Post-Lehman Crisis [From October 2008 to June 2010]

(1) Ave. -2.76 372.3 22.3 34.1 56.4 75.8 8.5 9.9 18.4

(2) Rel. - 100.0 ％ 6.0 ％ 9.2 ％ 15.2 ％ 100.0 ％ 11.2 ％ 13.0 ％ 24.3 ％

Starting on our simulation at the date of October 31, 2003, we compute the DHGL of each strategy at the end date

after one month, and repeat the same computations on the following day after October 31, 2003. The final simulation starts

at May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results of 1,717 samples through those iterated

simulations. We employ the Garman-Kohlhagen model, as an extension of the Black-Scholes model to currency options,

to compute the delta of the short option positions for tractability. In this table, ”VRP Para.” denotes the volatility risk

premium parameter in each period. ”Pre.” shows the option premium for each corresponding strategy. ”RP” and ”PU” show

the contribution of the volatility risk premium and parameter uncertainty to the total expected DHGL, respectively. ”Tot.”

shows the total expected DHGL. Each value introduced above is shown in terms of the average (”Ave.”) in each period

and also shown in terms of the relative percentage to corresponding option premium (”Rel.”). The average value of option

premium and each contribution to the total expected DHGL shown in this table are monthly based basis point returns.

From these empirical results, we can recognize that parameter uncertainty makes an

significant impact on option premiums, especially in the post-financial crisis period, as
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well as the volatility risk premium, and the effect of parameter uncertainty seems to

induce much higher option premiums. Needless to say, the sign and the level of the

expected delta-hedged option returns do not generally explain the existence of volatility

risk premiums. It needs to be emphasized that there are additional important factors

such as parameter uncertainty that make an impact on delta-hedged option returns,

rendering standard hedging-based tests on volatility risk premiums explored by previous

works unreliable.

5 Concluding Remarks

In this paper, we provide a novel representation of delta-hedged option returns in a

stochastic volatility environment. The representation of delta-hedged option returns in

which we propose consists of two terms: volatility risk premium and parameter uncer-

tainty. In an empirical analysis, we examine the delta-hedged option returns based on

the historical simulation of a currency option market from October 2003 to June 2010.

We find that the delta-hedged option returns for OTM put options are strongly affected

by parameter uncertainty as well as the volatility risk premium, especially in the post-

Lehman shock period.

This study is the first to provide empirical evidence on the effect of parameter un-

certainty on dellta-hedged option returns. However, the analysis examined in this paper

constitutes a first step toward a more detailed investigation of the empirical character-

istics of delta-hedged option returns. A next step might be a detailed analysis on the

impact of jump risk on delta-hedged option returns. A further direction of this study

will be to provide a contribution analysis of delta-hedged option returns with the effect

of parameter uncertainty, as well as the effects of volatility and jump risk premiums.

Appendix A Proof of Proposition 1.

In order to obtain the DHGL formula for the representative option market maker with

the misspecified function G, we replace the Greeks defined for F with those for G in (4)

and (5),

ΠG
t,t+τ =

∫ t+τ

t

LG(u, S̃u, σ̃u)du +

∫ t+τ

t

ηu
∂G

∂σ̃
(u, S̃u, σ̃u)dW 2

u . (20)

Thanks to (7),

∂G

∂t
(t, S̃t, σ̃t) +

1

2
σ2

t S
2
t

∂2G

∂S̃2
(t, S̃t, σ̃t) − rdG(t, S̃t, σ̃t) + (rd − rf )St

∂G

∂S̃
(t, S̃t, σ̃t)

= −(θ̃t − λt)
∂G

∂σ̃
(t, S̃t, σ̃t) −

1

2
η̃2

u

∂2G

∂σ̃2
(t, S̃t, σ̃t) − ρ̃tη̃tσtSt

∂2G

∂S̃∂σ̃
(t, S̃t, σ̃t).

(21)
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Substituting (21) into (20), we have

ΠG
t,t+τ =

∫ t+τ

t

[1

2
(η2

u − η̃2
u)

∂2G

∂σ̃2
(u, S̃u, σ̃u)

+ (ρuηu − ρ̃uη̃u)σuSu
∂2G

∂S̃∂σ̃
(u, S̃u, σ̃u) + (θu − θ̃u)

∂G

∂σ̃
(u, S̃u, σ̃u)

]
du

+

∫ t+τ

t

λu
∂G

∂σ̃
(u, S̃u, σ̃u)du +

∫ t+τ

t

ηu
∂G

∂σ̃
(u, S̃u, σ̃u)dW 2

u .

(22)

Thus, taking expectation to (22) under the physical measure P, the expected DHGL for

the representative option market maker can be derived in the following equation:

EP[ΠG
t,t+τ

]
=

∫ t+τ

t

EP
[1

2
(η2

u − η̃2
u)

∂2G

∂σ̃2
(u, S̃u, σ̃u)

+ (ρuηu − ρ̃uη̃u)σuSu
∂2G

∂S̃∂σ̃
(u, S̃u, σ̃u) + (θu − θ̃u)

∂G
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(u, S̃u, σ̃u)

]
du

+

∫ t+τ

t

EP
[
λu

∂G

∂σ̃
(u, S̃u, σ̃u)

]
du.

¤

Appendix B Proof of Proposition 2.

The following equation can be derived by applying Ito’s lemma to the market price

CM
t = G(t, S̃t, σ̃t),

CM
t+τ = CM

t +

∫ t+τ

t

∂G

∂S̃
(u, S̃u, σ̃u)dS̃u

+

∫ t+τ

t

∂G

∂σ̃
(u, S̃u, σ̃u)dσ̃u +

∫ t+τ

t

D̃G(u, S̃u, σ̃u)du,

(23)

where

D̃G(t, S̃t, σ̃t) =
∂G

∂t
(t, S̃t, σ̃t) +

1

2
σ2

t S
2
t
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1

2
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t
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(t, S̃t, σ̃t) + ρ̃tη̃tσtSt

∂2G

∂S̃∂σ̃
(t, S̃t, σ̃t),

and CM
t = G(t, S̃t, σ̃t) is also solves the equation (21). Under the two equations of (21)

and (23), we can derive the following equation with the market price CM
t ,

CM
t+τ = CM

t +

∫ t+τ

t

∂CM
u

∂S̃u

dS̃u +

∫ t+τ

t

(
rdC

M
u − (rd − rf )Su

∂CM
u

∂S̃u

)
du

+

∫ t+τ

t

λu
∂CM

u

∂σ̃u

du +

∫ t+τ

t

η̃u
∂CM

u

∂σ̃u

dW 2
u .

(24)
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If CM
t [λu] denotes the time-t call option price which is consistent with the underlying

exchange rate process (6) and the equivalent martingale measure Q[λu], the following

equation can be derived because of the fact that CM
T [λu] = CM

T [0] at the maturity date.

CM
t [λu] +

∫ t+τ

t

∂CM
u [λu]

∂S̃u

dS̃u +

∫ t+τ

t

(
rdC

M
u [λu] − (rd − rf )Su

∂CM
u [λu]

∂S̃u

)
du

+

∫ t+τ

t

λu
∂CM

u [λu]

∂σ̃u

du +

∫ t+τ

t

η̃u
∂CM

u [λu]

∂σ̃u

dW 2
u

= CM
t [0] +

∫ t+τ

t

∂CM
u [0]

∂S̃u

dS̃u +

∫ t+τ

t

(
rdC

M
u [0] − (rd − rf )Su

∂CM
u [0]

∂S̃u

)
du

+

∫ t+τ

t

η̃u
∂CM

u [0]

∂σ̃u

dW 2
u .

Rearranging the above equation with (6) and taking expectation to the rearranged equa-

tion, we can obtain the following representation.

CM
t [0] − CM

t [λu] =

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du + rd

∫ T

t

EP
[
CM

u [λu] − CM
u [0]

]
du. (25)

First, let us assume λu ≥ 0. We have the following inequations on the option pre-

mium,

CM
u [λu] − CM

u [0] ≤ 0 (∀u ∈ [t, T ])

and

∂

∂u
EP

[
CM

u [λu] − CM
u [0]

]
= EP

[ ∂

∂u

(
CM

u [λu] − CM
u [0]

)]
≥ 0.

Thus,

CM
t [0] − CM

t [λu] =

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du + rd

∫ T

t

EP
[
CM

u [λu] − CM
u [0]

]
du

≥
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du + rd(T − t)

(
CM

t [λu] − CM
t [0]

)
,

∴
(
1 + rd(T − t)

)(
CM

t [0] − CM
t [λu]

)
≥

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du.

We also have a inequation of EP
[
CM

u [λu] − CM
u [0]

]
≤ 0, so the following inequation can

be obtained,

CM
t [0] − CM

t [λu] ≤
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du.

Thus we can derive the following inequation with two inequations derived above,

CM
t [0] − CM

t [λu] ≤
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σ̃u

]
du ≤

(
1 + rd(T − t)

)(
CM

t [0] − CM
t [λu]

)
.
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In the case of λu < 0, we have the following inequations,

CM
u [λu] − CM

u [0] ≥ 0 (∀u ∈ [t, T ])

and

∂

∂u
EP

[
CM

u [λu] − CM
u [0]

]
= EP

[ ∂

∂u

(
CM

u [λu] − CM
u [0]

)]
≤ 0.

Thus we can derive the inequation asserted in this Proposition with the similar approach

to the discussion explored above. ¤

Appendix C Time series data

Table 7: Summary Statistics for Implied Volatilities

Statistics D5Put D10Put D15Put D25Put D35Put ATM D35Call D25Call D15Call D10Call D5Call

Mean 16.2 15.2 14.6 13.4 12.7 12.0 11.5 11.1 11.0 11.2 11.3

St. Dev. 7.7 6.7 6.4 5.5 5.1 4.6 4.3 3.9 3.9 3.9 4.0

Min 7.4 6.4 6.9 6.5 6.0 5.8 5.5 4.6 4.8 3.9 5.7

1’st q. 10.5 10.2 9.8 9.3 9.1 8.8 8.5 8.4 8.3 8.5 8.4

Median 15.0 14.1 13.5 12.4 11.8 11.3 10.9 10.7 10.5 10.6 10.7

3’rd q. 19.0 17.7 16.9 15.6 14.7 14.0 13.5 13.3 13.3 13.3 13.5

Max 59.7 54.0 53.7 48.3 46.0 43.0 40.4 38.1 37.0 36.1 35.9

Skew 1.9 1.8 1.9 1.8 1.9 1.8 1.7 1.7 1.5 1.5 1.4

Kurt 5.1 4.5 5.4 5.7 6.2 6.3 6.2 6.4 5.3 4.8 4.3

The implied volatility data is from the European type put and call OTC currency options with maturities of one

month and strike prices of 5 delta, 10 delta, 15 delta, 25 delta, 35 delta and ATM. The statistics listed in this table are

estimated in the period from October 2003 to June 2010.
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Fig. 3: USD-JPY WM/Reuter Closing Spot Rate

This figure shows the time-series data in the period from October 31, 2003 to June 30, 2010.
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Fig. 4: USD-JPY 1M ATM Implied Volatility（Mid Price）

This figure shows the time-series data in the period from October 31, 2003 to June 30, 2010.
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Fig. 5: USD-JPY 1M ATM Mid-Bid Spread

This figure shows the time-series data in the period from October 31, 2003 to June 30, 2010.

Appendix D Parameter estimation results for the Heston[1993]

model
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Fig. 6: The time-series of the estimated parameter：k̃

This figure shows estimation results of κ̃ at each time point in the period from October 31, 2003

to June 30, 2010. These parameters are estimated with the maximum liklihood method proposed by

Aı̈t-Sahalia and Kimmel[2007] and we update the parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure.
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Fig. 7: The time-series of the estimated parameter：ṽ

This figure shows estimation results of ṽ at each time point in the period from October 31, 2003

to June 30, 2010. These parameters are estimated with the maximum liklihood method proposed by

Aı̈t-Sahalia and Kimmel[2007] and we update the parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure.

-1.12 1.223248 0.237482 -0.225 1.223664 0.238179

-1.03 1.064888 0.224394 -0.10839 1.205955 0.236636

-1.02 1.088452 0.226761 -0.11763 1.190928 0.235355

-0.97 1.25986 0.240997 -0.17156 1.194888 0.235657

-0.80 1.259863 0.240998 -0.17156 1.198855 0.235959

-0.88 1.259976 0.24101 -0.17156 1.202885 0.236262

-1.04 1.259939 0.241006 -0.17156 1.206913 0.236566

-0.97 1.260179 0.24103 -0.17156 1.211065 0.236882

-1.18 1.265744 0.24456 -0.18883 1.215794 0.237582

-1.31 1.460897 0.261908 -0.27371 1.2422 0.240296

-1.53 1.390065 0.254435 -0.23833 1.27833 0.243634

-1.50 1.374162 0.252873 -0.23073 1.310076 0.246535

-1.40 1.383011 0.253777 -0.23548 1.323759 0.247955

-1.34 1.384647 0.253965 -0.23672 1.337624 0.249396

-1.34 1.380927 0.253586 -0.23469 1.351063 0.250794

-1.06 1.384597 0.253952 -0.23648 1.364914 0.252232

-1.18 1.384699 0.25396 -0.23651 1.37875 0.253669

1.744027 0.292853 -0.43712 1.431893 0.259034

1.378584 0.256611 -0.25161 1.422747 0.258446

0.694761 0.188627 0.078817 1.345491 0.251134

1.222599 0.237646 -0.13927 1.32865 0.249442

1.267507 0.24193 -0.16076 1.315816 0.248125

1.267396 0.241906 -0.1608 1.302788 0.246785

1.26738 0.241905 -0.16081 1.290172 0.245488

-0.30
-0.28
-0.26
-0.24
-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00

31
-O
ct
-0
3

31
-D
ec
-0
3

29
-F
eb
-0
4

30
-A
pr
-0
4

30
-J
un
-0
4

31
-A
ug
-0
4

31
-O
ct
-0
4

31
-D
ec
-0
4

28
-F
eb
-0
5

30
-A
pr
-0
5

30
-J
un
-0
5

31
-A
ug
-0
5

31
-O
ct
-0
5

31
-D
ec
-0
5

28
-F
eb
-0
6

30
-A
pr
-0
6

30
-J
un
-0
6

31
-A
ug
-0
6

31
-O
ct
-0
6

31
-D
ec
-0
6

28
-F
eb
-0
7

30
-A
pr
-0
7

30
-J
un
-0
7

31
-A
ug
-0
7

31
-O
ct
-0
7

31
-D
ec
-0
7

29
-F
eb
-0
8

30
-A
pr
-0
8

30
-J
un
-0
8

31
-A
ug
-0
8

31
-O
ct
-0
8

31
-D
ec
-0
8

28
-F
eb
-0
9

30
-A
pr
-0
9

30
-J
un
-0
9

31
-A
ug
-0
9

31
-O
ct
-0
9

31
-D
ec
-0
9

28
-F
eb
-1
0

30
-A
pr
-1
0

30
-J
un
-1
0

-0.30
-0.28
-0.26
-0.24
-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00

Fig. 8: The time-series of the estimated parameter：ρ̃

This figure shows estimation results of ρ̃ at each time point in the period from October 31, 2003

to June 30, 2010. These parameters are estimated with the maximum liklihood method proposed by

Aı̈t-Sahalia and Kimmel[2007] and we update the parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure.
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