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RECURSIVE UTILITY FUNCTIONS
WITH EXTENDED STATES

TAKANORI ADACHI

ABSTRACT. We introduced a concept called extended state that is
defined as a history of an observer’s recognition on the state of the
world Ω with a filtration G. Then Ω is naturally embedded into
the set of all extended states Ω[G]. A subset of Ω[G] represents
the observer’s ability to recognize the world.

We applied the concept to dynamic choice theory by calculat-
ing value functions that characterize preference relations between
consumption plans. The resulting functions are aware not only of
prior ambiguity but also of state ambiguity.

1. INTRODUCTION

In dynamic choice theory starting from [KP78] through [Str13], we
usually think a set of preference relations ⪰t,ω indexed by a time and
a state (t, ω) ∈ T × Ω. However, in case Ω is an infinite set, the mea-
sure of a singleton set {ω} is (usually) 0. Then, what is the meaning
of thinking of a preference relation whose domain has measure 0?

On the other hand, at time t, can an observer pick an exact state ω
of the world where she lives? Isn’t it more natural to assume that she
only selects a (possibly non-singleton) set of states for representing
her belief on the current world?

In order to answer these issues, we replace a single ω by a narrowing-
in process, called an extended state.

An extended state is a history of an observer’s recognition on the
state of the world where she has lived in. Then, a set of extended
states represents her ability to recognize the world. Here, the abil-
ity is determined not only by her personal talent such as reasoning
ability but also determined by her external environment such as con-
straints delivered by asymmetric information. The important point
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FIGURE 2.1. (Ω,G, {Gt}t∈T )

is that the ability varies per person. So, we can use the set of ex-
tended states to treat some uncertainty or ambiguity just like we do
with subjective probabilities. We will see the detail of the concept of
extended states in Section 2.

In Section 3, we will apply the concept of extended states to cal-
culate value functions that characterize preference relations between
consumption plans. The resulting value functions will be aware not
only of usual prior ambiguity but also of state ambiguity. We will
also see that the value functions are more conservative than those
defined in classical settings.

2. EXTENDED STATES

Let T be a time domain with the least time 0. For s, t ∈ T , we
write [s, t] := {u ∈ T | s ≤ u ≤ t}. All the discussions in this paper
are on a filtered measurable space

(2.1) (Ω,G, G = {Gt}t∈T )

that satisfies G =
∨

t∈T Gt.

2.1. Extended States. First, let us see the following simple discrete
example that we frequently come back on.

Example 2.1. (1) Ω = {ω0, ω1, ω2, ω3},
(2) T = {0, 1, 2},
(3) G0 = {∅, Ω},
(4) G1 = {∅, {ω0, ω1}, {ω2, ω3}, Ω},
(5) G = G2 = 2Ω.

We can identify this structure with the binary tree in Figure 2.1
where the time increases from left to right and each node in the tree
corresponds to a measurable set in Gt.

The structure in Figure 2.1 may come with a probability measure.
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FIGURE 2.3. Partial order among extended states

Suppose that we have two sets A and B in G with A ⊂ B. Then, the
set A represents a finer information or a better recognition about a
situation than B does. On the other hand, the fineness of our knowl-
edge at time t about the situation is limited to the sets ranging in
Gt.

Now, thinking about a process representing an improvement of
our knowledge as time goes by, it is natural to define the process as
a decreasing sequence of sets whose member at time t is in Gt. In
Figure 2.2, paths i0 through i4 are those narrowing-in processes called
extended states when the true state is ω0.

There are five extended states that share ω0 as a possible true state.
The top of them, i0 in Figure 2.2, is the most efficient narrowing-in
process. On the other hand, In the bottom of them, i4, is the worst
process with no update all the time.

Naturally, we are able to introduce a partial order among these ex-
tended states, according to the ’superior-to’ relation between them.
Figure 2.3 shows the partial order among extended states specified
in Figure 2.2.

Here is a formal definition of extended states for general (Ω,G, G).

Definition 2.2. [Extended States]
(1) Ω[G] := {i : T → G | (∀t ∈ T )i(t) ∈ Gt − {∅} and (∀s, t ∈

T )[s ≤ t ⇒ i(s) ⊃ i(t)]}.
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FIGURE 2.4. Ω[G]

An element of Ω[G] is called an extended state.
(2) Binary relations ≤ and ≤t on Ω[G] are defined by for i, j ∈

Ω[G], i ≤ j ⇔ (∀t ∈ T )i(t) ⊃ j(t) and i ≤t j ⇔ (∀s ∈
[0, t])i(s) ⊃ j(s).

(3) Let ⊥ : T → G be a function satisfying (∀t ∈ T )⊥(t) = Ω.
Then ⊥ is the least element of the partially ordered set (poset)

(Ω[G],≤).

Figure 2.4 shows the structure Ω[G] corresponding to (Ω,G, {Gt}t∈T )
defined in Figure 2.1. Note that the structure is not expected to come
with probability measures.

Definition 2.3. (1) For ω ∈ Ω and t ∈ T , a subset ω(t) ⊂ Ω is
defined by

(2.2) ω(t) :=
∩
{A ∈ Gt | ω ∈ A}.

(2) For i ∈ Ω[G] and ω ∈ Ω, we write ω ∈ i if (∀t ∈ T )ω ∈ i(t).

Definition 2.4. A filtered measurable space (Ω,G, G = {Gt}t∈T ) is
called regular if ω(t) is in Gt for any pair of ω ∈ Ω and t ∈ T .

Note that if Ω is a finite set, (Ω,G, G) is always regular for any
filtration G.

Remark 2.5. [Embedding of Ω into Ω[G]] If a filtered measurable
space (Ω,G, G) is regular, we have

(2.3) ω =
∨
{i ∈ Ω[G] | ω ∈ i}.
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Moreover, if {ω} ∈ G for every ω ∈ Ω, then the mapping

Ω · // Ω[G]

ω � //

∈

ω

∈

is an embedding. This is why we call an element of Ω[G] an extended
state.

2.2. Sets of Extended States. Each observer has a subset of Ω[G]
corresponding to her narrowing-in ability. Some ability may be de-
termined by external reasons such as the size of the accessible infor-
mation that came from the asymmetricity of information, whereas
some may be determined by internal reasons such as her reasoning
power.

Definition 2.6. [Neighborhoods and Regular Subsets]
Let S be a subset of Ω[G].
(1) A neighborhood NS(ω) of ω ∈ Ω is a subset of S defined by

(2.4) NS(ω) := {i ∈ S ] | ω ∈ i}.

(2) A subset S is called regular if for every ω ∈ Ω, NS(ω) is non-
empty, and has a sup in S . We write the sup by ωS .

Note that Ω[G] itself is a regular subset of Ω[G] if (Ω,G, G) is reg-
ular.

Remark 2.7. If a subset S ∈ Ω[G] is regular and {ω} ∈ G for every
ω ∈ Ω, then the mapping

Ω // S

ω � //

∈

ωS

∈

is an embedding.

Definition 2.8 defines a type of the subsets that may not contain
some dumb extended states in the original set.

Definition 2.8. [Dominant Subsets] Let S be a subset of Ω[G].
(1) ΩS := {ω ∈ Ω | (∃i ∈ S)ω ∈ i}.
(2) A set D ⊂ S is called a dominant subset of S if it satisfies the

following two conditions:
(a) ΩD = ΩS ,
(b) (∀i ∈ D)(∀j ∈ S)i ≤ j implies j ∈ D.

If D is a dominant subset of S , an observer who has an ability rep-
resented by D is considered to be relatively smarter than an observer
who has an ability represented by S .
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FIGURE 2.5. N 2
G(ω0)

Example 2.9. For ε > 0, define Ωε[G] by

N ε
G(ω) :={i ∈ NΩ[G](ω) | (∀t ∈ [ε, ∞[)

[
i(t) /∈ Gt−ε(2.5)

or (∀A ∈ Gt)[ω ∈ A ⊂ i(t) implies A = i(t)]
]
},

Ωε[G] :=
∪

ω∈Ω

N ε
G(ω).(2.6)

Then, Ωε[G] is a dominant subset of Ω[G].

The tree shown in Figure 2.2 is considered as NΩ[G](ω0). Then,
N 2

G(ω0) is a tree in Figure 2.5, which is created just by removing the
worst narrowing-in process i4 from the tree in Figure 2.2.

Next we will think about a situation where an observer has a dif-
ficulty to access full information. In other words, the information
she can access is limited to a subfiltration F = {Ft}t∈T of G, where
Ft ⊂ Gt for all t ∈ T . Then, it is easy to check that Ω[F] ⊂ Ω[G].

One of the examples of the situation comes with a filtration speci-
fying information delay.

Example 2.10. Let f = { ft}t∈T be a G-follower process defined in
[AMN13] that is an T -valued G-adapted stochastic process satisfy-
ing ft ≤ t and fs ≤ ft for all pairs s and t in T with s ≤ t. Let
G f = {G f

t }t∈T be a follower filtration modulated by f introduced in
Definition 3.1 of [AMN13] where they define it by

(2.7) G f
t :=

∨
s∈[0,t]

G fs .

We can see the follower process f as a constraint enforced to the
observer. Then the subset Ω[G f ] ⊂ Ω[G] is a set of extended states
representing her ability.

By combining the results of Example 2.9 and Example 2.10, one of
the specifications of subsets of Ω[G] is of the form

(2.8) S := Ωε[G f ]
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with a G-follower process f and ε > 0 that can represent both the
constraints coming from asymmetric information and the observer’s
reasoning ability.

We may utilize this type of specifications when we build a set of
scenarios systematically for stress tests required by authorized rules
such as Basel III.

2.3. Worlds.

Definition 2.11. [Worlds] Let S be a subset of Ω[G].
(1) For t ∈ T and i ∈ Ω[G], it := i|[0,t].
(2) The set of worlds denoted by W(S) is defined by

(2.9) W(S) := {(t, it) | t ∈ T , i ∈ S}.

(3) For w = (t, it) ∈ W(S), w := i(t).
(4) A binary relation ≤ on W(S) is defined by for (s, is), (t, jt) ∈

W, (s, is) ≤ (t, jt) iff s ≤ t and is = js.

Proposition 2.12. Let S be a subset of Ω[G].
(1) (W(S),≤) is a poset.
(2) If G0 = {∅, Ω}, then (0,⊥0) ∈ W(S) is the least element.

Proof. Straightforward. □
If S ⊂ Ω[G] is a regular set, we have a natural map

T × Ω // W(S)

(t, ω) � //

∈

(t, (ωS)
t)

∈

which plays an important role in Section 3.

3. RECURSIVE UTILITY FUNCTIONS

In this section, we assume the time domain is discrete and has its
terminal (horizon) time T, that is, T = {0, 1, 2, . . . , T}.

Let X be a Polish space with the Borel σ-field B(X).
A consumption plan is a bounded G-adapted process h : T × Ω →

X. Let H := H[G] be a set of all consumption plans.

3.1. Recursive Utility Functions in Classical Settings. Now we pro-
ceed to review recursive utility functions in classical settings.

Definition 3.1. [Recursive Utility Functions in Classical Settings]
V : (T × Ω) → (H → R) is a G-adapted process defined by

(3.1)

V(t, ω)(h) =

{
u(h(t, ω)) + βJ(t, ω)(V(t + 1,−)(h)) if t < T,
u(h(T, ω)) if t = T,

where
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(1) u : X → R is a vNM type utility function,
(2) β ∈]0, 1[,
(3) J : T × Ω → ((Ω → R) → R).

We provide two examples of J defined in Definition 3.1. They are
for the EU model and the MEU model, respectively

Definition 3.2. [Typical J’s]
(1) For a probability measure µ on (Ω,G), t ∈ T and ω ∈ Ω,

define a probability measure µ(t, ω) on (Ω,G) by for A ∈ G,

(3.2) µ(t, ω)(A) := µ(A | Gt)(ω).

(2) EU model

(3.3) J(t, ω)(ξ) :=
∫

Ω
ξdµt,ω(t, ω),

where µt,ω is a prior defined on (Ω,G).
(3) MEU model

(3.4) J(t, ω)(ξ) := inf
µ∈P(t,ω)

∫
Ω

ξdµ(t, ω),

having prior ambiguity, where P(t, ω) is a set of probability
measures on Ω.

3.2. Recursive Utility Functions with State Ambiguity. We want
to replace T × Ω appeared in Definition 3.1 by W(S) in order to
allow the value function V to treat state ambiguity as well as prior
ambiguity.

In the following discussion, let S ⊂ Ω[G] be a fixed set of extended
states. Before defining sets of priors, we need some auxiliary sets
that relate to possible next steps from a given world w ∈ W(S).

Definition 3.3. Let w = (t, it) ∈ W(S) and µ be a probability mea-
sure on (Ω,G). µ is said conditionable with w if the conditional prob-
ability measure µ(− | w) is well-defined on Gt

1. For ω ∈ Ω,

(3.5) N0(w, ω) := {(t + 1, jt+1) | j ∈ NS(ω), jt = it},

(3.6) N(w, µ, ω) := {v ∈ N0(w, ω) | µ is conditionable with v},

(3.7) D(w, µ) := {ω ∈ w | N(w, µ, ω) ̸= ∅}.

Definition 3.4. [Priors P]
(1) A set-valued function ∆ on G is defined by for A ∈ G,

(3.8)
∆(A) := {µ | a probability measure on (Ω,G) with µ(A) = 1}.

1We want to avoid situations like the Borel-Kolmogorov paradox.
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(2) The set of extended worlds denoted by EW(S) is defined by

(3.9) EW(S) :=
⊕

w∈W(S)
∆(w).

(3) A subset P ⊂ EW(S) is called to satisfy the rectangularity
condition if the following four conditions hold:
(a) for any w ∈ W(S), there exists µ ∈ ∆(w) such that

(w, µ) ∈ P ,
(b) if (v, µ) ∈ P and w ∈ W(S) with v ≤ w and µ is condi-

tionable with w, then (w, µ(− | w)) ∈ P ,
(c) let t ∈ T , I be an index set either {0, 1, 2, . . . , N − 1} or

N, i, jn ∈ S for all n ∈ I such that {jn(t)}n∈I are mutually
disjoint and

∪
n∈I jn(t) = i(t). If ((t, it), µ), ((t, jt

n), νt) ∈
P for all n ∈ I, then ((t, it), ∑n∈I µ(jn(t))νn) ∈ P ,

(d) for every (w, µ) ∈ P with w = (t, it), D(w, µ) ∈ Gt.

Proposition 3.5. [Priors P] Suppose that P ⊂ EW(S) satisfies the rect-
angularity condition. Then, if i(t) = j(t), we have P(t, it) = P(t, jt),
where P(w) := {µ | (w, µ) ∈ P}.

Proof. Let N := 1, j0 := j and ν0 := ν in the condition (c) of Definition
3.4 (3). Then, since i(t) = j(t), the assumptions of the condition (c)
are satisfied. Therefore, ((t, it), µ), ((t, jt), ν) ∈ P imply ((t, it), ν) ∈
P . Then, by the condition (a) of Definition 3.4 (3), P(t, jt) ⊂ P(t, it).
Similarly we have P(t, it) ⊂ P(t, jt). □
Definition 3.6. When P ⊂ EW(S) satisfies the rectangularity condi-
tion, P :

⊕
t∈T Gt → Set is a function defined by P(t, w) := P(w).

Note that Definition 3.6 is well-defined by Proposition 3.5.

Example 3.7. Define P over the structure defined in Example 2.1.
(1) Θ := [rL, rH] with 0 < rL ≤ rH < 1.
(2) For (r0, r1, r2) ∈ [0, 1]3, a probability measure on (Ω,G)

µr0r1r2 is defined by the tree in Figure 3.1.
(3) P(·, Ω) := {µr0r1r2 | (r0, r1, r2) ∈ Θ3},

P(·, {ω0, ω1}) := {µ1,r1,1 | r1 ∈ Θ},
P(·, {ω2, ω3}) := {µ0,1,r2 | r2 ∈ Θ},
P(·, {ωi}) := {δωi}.

Definition 3.8. [State-Ambiguity-Aware Recursive Utility Functions]

(1) V : EW(S) → (H → R) is a function defined by for w =
(t, it) ∈ W(S), (w, µ) ∈ EW(S) and h ∈ H,

(3.10) V(w, µ)(h) =

{
I(w, µ)ht + βJ(w)(h) if t < T,
I(w, µ)hT if t = T
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µr0r1r2{ω3} = (1 − r0)(1 − r2)1 − r2

µr0r1r2{ω2} = (1 − r0)r2r21− r0

µr0r1r2{ω1} = r0(1 − r1)1 − r1

µr0r1r2{ω0} = r0r1r1

r0

FIGURE 3.1. µr0r1r2

where
(a) I : G × ∆(Ω) → ((Ω → X) → R),
(b) β ∈]0, 1[,
(c) J : W(S) → (H → R).

Definition 3.9. [I and J]
The typical I and J for V defined in Definition 3.8 are

(3.11) I(B, µ)(ξ) :=
∫

B
u ◦ ξdµ,

where u : X → R is a vNM type utility function, and
(3.12)

J(w)(h) := inf
η∈P(w)

∫
D(w,η)

(
inf

v∈N(w,η,ω)
V(v, η(− | v))(h)

)
dη(ω).

In general, the values of the new J defined by (3.12) are smaller (or
more conservative) than those of the old J defined by (3.4) since the
new J has an extra inf to pick the minimum value in each neighbor-
hood N(w, η, ω).

Example 3.10. In this example, we demonstrate how to calculate the
value function for a concrete consumption plan h : T × Ω → X
specified on top of the structure in Example 2.1.

Suppose that ut,i := u(h(t, ω)) ∈ R is defined by Figure 3.2 with
the dominant set S := Ω2[G] whose subset N 2

G(ω0) is shown in Fig-
ure 2.5.

Here is a backward calculation of V((1, i1
0), µ1,r1,1)(h).
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u0,0

u1,1
u2,3 = u(h(2, ω3))

u2,2 = u(h(2, ω2))

u1,0
u2,1 = u(h(2, ω1))

u2,0 = u(h(2, ω0))

FIGURE 3.2. u ◦ h : T × Ω → R

Ω

. . .

{ω0, ω1}

{ω0, ω1} : i2

{ω1} : i1

{ω0} : i0

FIGURE 3.3. V((t, it), µ)(h)

V((2, i2
0), δω0)(h) = I(i0(2), δω0)(h2) =

∫
{ω0}

u(h2(ω0))dδω0 = u2,0,

V((2, i2
1), δω1)(h) = u2,1,

V((2, i2
2), µ1,r1,1)(h) = r1u2,0 + (1 − r1)u2,1,

V((1, i1
0), µ1,r1,1)(h) = u1,0

+ β

{
rL(rLu2,0 + (1 − rL)u2,1) + (1 − rL)u2,1 if u2,0 > u2,1

rHu2.0 + (1 − rH)(rHu2,0 + (1 − rH)u2,1) otherwise.

3.3. The Preference for Earlier Resolution of Uncertainty. In this
subsection, we show a trial to investigate what if there is no prior
ambiguity but just we have state ambiguity. In our familiar Example
2.1 with the probability measure defined in Example 3.7, this is the
case when rL = rH.

One of the famous puzzles in dynamic choice theory is the prefer-
ence for earlier resolution of uncertainty. Figure 3.4 taken from [Str13],
show two consumption plans h and h′ that are indifferent under the
classical expected utility (EU) value functions. However, once we
start thinking the case with prior ambiguity by the MEU model, we
have h ⪰0,ω h′.

So, a natural question we have here now is: can the preference for
earlier resolution of uncertainty be represented only by state ambiguity?
In other words, can we make a model representing the following



12 T. ADACHI

h : a
a

c = u(h(2, ω3))

c = u(h(2, ω2))

a
b = u(h(2, ω1))

b = u(h(2, ω0))

h′ : a
a

c = u(h′(2, ω3))

b = u(h′(2, ω2))

a
c = u(h′(2, ω1))

b = u(h′(2, ω0))

FIGURE 3.4. Consumption plans h and h′

inequation?

(3.13) V((0,⊥0), µ)(h) ≥ V((0,⊥0), µ)(h′)

Figure 3.5 exhibits a calculation of the value function when r :=
rL = rH, β = 1 and a = 0 on top of Example 2.1 and Example 3.7,
where rAB := rA + (1 − r)B and A ∧ B := inf{A, B} are abbrevia-
tions.

As seeing in the figure, we have

(3.14) V((0,⊥0), µ)(h) = r(b ∧ rbc)(c ∧ rbc) = V((0,⊥0), µ)(h′),

which is not our expecting result, unfortunately.

4. CONCLUDING REMARKS

We introduced a concept of extended states as a kind of narrowing-
in processes of information. We showed that each set of extended
states represents an observer’s narrowing-in ability determined by
her personal talent such as reasoning power and also by constraints
coming from her external environment.

As an application of the concept of extended states, we formulated
a recursive value function that is aware not only of prior ambiguity
but also of state ambiguity. The resulting function is more conserva-
tive than a classical value function in the sense that the value of our
function is not greater than that of the classical one.
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Ω : r(b∧rbc)(c∧rbc)
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