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Abstract

We propose a new nonlinear filtering model for a better estimation of credit rating transition
matrix consistent with the hypothesis that rating transition intensities as well as dynamics
of financial asset prices depend on some unobservable macroeconomic factor. We attempt a
branching particle filter method to numerically obtain the conditional distribution of the latent
factor. For an illustration, we analyze a rating transition history of Japanese enterprises. As
a result, we realize that our model can capture some contagion effect of credit events and an
interpolative role of financial market information on the rating transition intensities.
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1 Introduction

Credit ratings, whether they are assigned by public rating agencies or by some internal rating

procedures, play a significant role in both credit risk management and defaultable debt valuation.

Accordingly, it is important for risk management to assess the possibility of rating changes as well

as defaults in the future as accurately as possible.

In general, a so-called cohort method, namely the maximum likelihood estimation with counting

data of credit events over a long period, has been often used for estimation of credit rating transition

probability matrix. With this method, various applications are possible by obtaining an infinitesimal

generator matrix of the credit rating transitions. The idea behind this method is the presumption

that stable and reliable rating transition probabilities can be estimated by observing actual credit

events for a long period.

However, as some empirical studies imply, it seems appropriate to suppose that the rating

transition probabilities fluctuate as time passes because of irregular economic cycles and so forth.

∗hnakagawa@ics.hit-u.ac.jp
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Thus, it is rational to consider an estimation problem of rating transition probabilities under

the assumption that such probabilities are not constant in time but dependent on some dynamic

economic factors. In addition, we should notice that such economic factors would not necessarily

be specified. Indeed some literature suggests that it is better to suppose that some latent factors

can exist for analyzing historical data of credit events.

For example, Duffie et al. [2009] suggest a strong evidence for the presence of frailty, that is,

unobservable common factors to explain default clustering observed in U.S. corporate defaults. We

adhere fundamentally to the concept that the uncertainty about frailty may imply an additional

correlation beyond so-called doubly stochastic framework. Therefore we start with the hypothesis

that the rating transition probabilities are dependent upon some unobservable variable, which may

be interpreted as some macroeconomic factor.

We construct an intensity-based rating transition model that enables us to apply the non-linear

filtering methodology1 introduced by Frey and Runggaldier [2010]. Frey and Runggaldier [2010]

study the pricing of credit derivatives in reduced-form portfolio credit risk model under incomplete

information and then succeed in representing information-driven default contagion via filtering,

that is, successive updating of the conditional distribution of an unobservable factor in reaction to

incoming default observations.

Different from Frey and Runggaldier [2010], we consider multiple rating classes including default,

and then it is necessary to construct a dynamic transition probability matrix. Since it is much

complicated to do with the dynamic transition probability matrix, instead we directly specify

appropriate transition intensity processes so that we can avoid the embedding problem for stochastic

matrices. Specifically, in order to keep tractability, we assume that transition intensities are driven

by a one-dimensional Ornstein-Uhlenbeck process.

Moreover we note that we stay under the real-world measure to see how both credit events

and some financial asset prices are related to dynamics of the unobservable factor, while Frey and

Runggaldier [2010] consider the pricing of the credit risky products under a risk-neutral measure.

Here we assume that the dynamics of some observable asset price process, such as market indexes,

may depend on the same unobservable factor.

As another model of credit rating transitions with latent dynamic factors, Koopman et al. [2006]

proposed the Multi-state Latent Factor Intensity (MLFI) model, in other words, an intensity-based

credit rating transition model with multiple states which are driven by exogenous covariates and

latent dynamic factors (one of which can be interpreted as the credit cycle). It is remarkable

that their parameter estimation is based on Monte Carlo maximum likelihood method for high-

dimensional integrations. Our approach is an alternative to such a maximum likelihood method.

We introduce a new model that facilitates computational tractability by assuming that a single

unobservable factor could grasp not only the dynamics of rating transitions but also the credit

contagion effects combined with Bayesian updating via filtering.

As for the previous researches analyzing the external rating transition history of Japanese

enterprises, see Nakagawa [2010], Yamanaka et al. [2011a], [2011b], [2012] for example. Different

from our main purpose of estimating the rating transition intensities, they use a top-down approach

for modeling upgrade and downgrade intensities to examine if there exist self-exciting effects of

1 In another area of finance, a nonlinear filtering with point process observations is, for example, studied by Ceci

and Geradi [2006] and Zeng [2003] for analysis of (ultra) high frequency trading.
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upgrade or downgrade in the same industry group and mutually exciting effects among different

industry groups.

Next we turn our eyes towards how to solve our nonlinear filtering problem numerically. For

the purpose, we rely upon a kind of branching particle filtering algorithm, which is mentioned by

Frey and Runggaldier [2010] for default event analysis, and we extend it into the case of multiple

rating classes. Specifically, in our particle filtering algorithm, we need to trace the rating transition

dynamics, or the variation of the distribution of the credit ratings over target firms in the sample

pool.

The rest of the paper is organized as follows. Section 2 introduces our filtering model to specify a

signal process and observation processes. Section 3 is devoted to derive some filtering equations and

a numerical algorithm relying upon the branching particle filter. Section 4 provides preliminaries for

empirical analysis based on the rating transition history of Japanese enterprises and the time series

data of the Tokyo Stock Price Index (TOPIX). Numerical results and discussions are presented in

section 5. Finally, section 6 mentions some concluding remarks. Appendix contains the proofs of

the theorems.

2 The filtering model

This section provides the filtering model for estimating rating transition matrix depending on

latent macroeconomic factor. Our filtering model is similar to (partly simpler than) that of Frey

and Runggaldier [2010], but has some extension.

2.1 General setting and notation

To begin with, let (Ω,F ,P) be a probability space and suppose that P is a real-world probability

measure. We construct a credit rating transition model on this filtered probability space. Hereafter

we often call an “event” for a credit rating change event including a default.

Let M ∈ N be a number of firms rated by some credit rating agency and let C = {1, 2, . . . ,M}
be a set of the rated firms. Also, let D be a natural number more than 2 and let R = {1, 2, . . . , D}
be a set of credit ratings. Suppose that 1 is the highest credit rating such as “AAA”, 2 is the

second highest rating such as “AA”, and so forth and that D is the default state. When we write

(α, β) ∈ R2 for an event, the first component α stands for the previous rating just before the event

and the second component β stands for the current rating just after the event.

For each i ∈ C, denote by {Y i
t }t≥0 a time-inhomogeneous Markov chain on state space R such

that Y i
t indicates the credit rating at time t of firm i. If a rating change with (α, β) ∈ R2 happens

to firm i at time t, it follows that Y i
t− = α and Y i

t = β. Thus the {Y i
t }t≥0 is a càdlàg process.

We write Yt for the vector (Y 1
t , . . . , Y

M
t ). Moreover we denote by Λt the common transition rate

matrix of the Markov chain Yt. We also denote by Tn the n-th event time of some firm in C and by

ξn ∈ C the identity of the firm corresponding to the n-th event time. In addition, the default time

of firm i ∈ C is given by τi = inf{t > 0 : Y i
t = D}. Next we define {Xt}t≥0 by a real-valued process

and will regard it as some macroeconomic factor that reflects the real-time business condition.

We implicitly presume that the larger (resp. smaller) Xt is, the worse (resp. better) the business

condition is. Then we assume that the transition rate matrix Λt of the Markov chain Yt is driven

by Xt, that is, specified as Λt = (λα,β(Xt))1≤α,β≤D with nonnegative functions {λα,β(x)}1≤α,β≤D.
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Moreover, we introduce another real-valued process {St}t≥0 regarded as the value process of

some financial asset or index such as stock price index observed in the market.

Before specifying the dynamics of the processes {Xt}t≥0, {Y i
t }t≥0 (i ∈ C) and {St}t≥0, we define

some filtrations2. Let Hi
t = σ(Y i

s : 0 ≤ s ≤ t) for i ∈ C and Ht = H1
t ∨ H1

t ∨ · · · ∨ HM
t . In other

words, the filtration (Hi
t)t≥0 stands for the information about the firm i’s history of credit ratings

(including default) until time t and (Ht)t≥0 stands for the information about the history of credit

ratings of the whole economy. Let FX
t = σ(Xs : 0 ≤ s ≤ t) and FS

t = σ(Ss : 0 ≤ s ≤ t) be the

σ-algebra generated by the process {Xt}t≥0 and {St}t≥0 respectively. Also, define Gt = FS
t ∨ Ht

and Ft = Gt∨FX
t . Hence we can consider that the filtration G = (Gt)t≥0 stands for the information

available for market participants while F = (Ft)t≥0 stands for the complete information that they

are unable to utilize. We should remark that the process {Xt}t≥0 is not G-adapted (but F-adapted)
while {Y i

t }t≥0 (i ∈ C) and {St}t≥0 are both G-adapted.

2.2 Signal process and observation processes

Now we specify the dynamics of the processes {Xt}t≥0, {Y i
t }t≥0 (i ∈ C) and {St}t≥0 as follows.

First, we assume that the latent macroeconomic factor process (“signal” in terms of the general

filtering theory) Xt is a strong solution of the following SDE3:

dXt = −κXtdt+ cdWt, (1)

where κ ∈ R, c > 0 and {Wt}t≥0 is a one-dimensional (P,F)-standard Brownian motion.

Second, we assume that rating transitions and the default occurred for firm i in the universe C
is specified by4.

Y i
t = Y i

0 +

∫ t

0

∫
U
δi(Xs−, Y

i
s−, u)Ki(Xs−, Y

i
s−, u)N (ds, du), i ∈ C

where δi(x, y, u) denotes a function taking values in {1 − y, 2 − y, . . . , D − y}\{0}, Ki(x, y, u)

denotes a function taking values in {0, 1} and N (ds, du) denotes a (P,F)- standard Poisson random

measure on (R+ × U) for some Euclidean space U . Let ν(du)ds be a compensator measure of

N (ds, du). Suppose that N (ds, du) is independent of the Brownian motion Wt. Let Ui(x, y) = {u ∈
U |Ki(x, y, u) ̸= 0}. Then we also assume that ν(Ui(x, y) ∩ Uj(x, y)) = 0 for i ̸= j (i, j ∈ C). This
assumption implies that Y i

t and Y j
t has no simultaneous jumps if i ̸= j. We remark that δi(x, y, u)

stands for the difference between a new rating of firm i and its last rating y at the time of its

rating transition and that Ki(x, y, u) represents whether some event occurs for firm i. Moreover,

the transition law of Y i
t does not depend on the other firms’ credit ratings.

Let N i
t =

∞∑
n=1

1{Tn≤t,ξn=i} be the counting process of firm i’s events. One then has

N i
t −

∫ t

0
1{Y i

s− ̸=D}ν
(
Ui(Xs−, Y

i
s−)
)
ds

2 All the filtration are supposed to satisfy the usual conditions, namely, they are supposed to be right-continuous

and complete.
3 Frey and Runggaldier [2010] consider a multi-dimensional (signal) factor that may jump according to a Poisson

random measure.
4 Frey and Runggaldier [2010] consider only default events while they suppose that one firm’s default intensity

can depend on other firms’ defaults
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= N i
t −

∫ t

0

∫
U
1{Y i

s− ̸=D}Ki(Xs−, Y
i
s−, u)ν(du)ds

=

∫ t

0

∫
U
1{Y i

s− ̸=D}Ki(Xs−, Y
i
s−, u)N (ds, du)−

∫ t

0

∫
U
1{Y i

s− ̸=D}Ki(Xs−, Y
i
s−, u)ν(du)ds

=

∫ t

0

∫
U
1{Y i

s− ̸=D}Ki(Xs−, Y
i
s−, u) [N (ds, du)− ν(du)ds] .

Since the last term is a F-martingale, we can identify ν
(
Ui(Xt−, Y

i
t−)
)
as the firm i’s event intensity

process λ(Y i
t−,•)(Xt).

Finally, we assume that the asset value process St is a strong solution of the following SDE

dSt

St
= µ(Xt)dt+ σdBt, (2)

where µ(x) is a measurable function, σ > 0 and {Bt}t≥0 is a (P,F)-standard Brownian motion,

independent of Wt and N (ds, du).

3 Filtering

We suppose that the process Xt is not directly observable for market participants and that the

available information is specified by the filtration G = (Gt)t≥0 generated by the events Yt and the

value process St of some financial asset or index. The purpose of this section is, for a given bounded

function f : R → R, to find some useful expression of the following filter

πt(f) := EP [f(Xt)|Gt]

in a recursive form.

3.1 Preliminary

First we use a measure change argument from the reference measure approach in order to reduce

the filter πt(f) with respect to Gt to that with respect to Ht. For this purpose, we redefine a

probability space as the product space of a space supporting (Xt,Yt) and the other supporting St

as follows. This argument is analogous to that of Frey and Runggaldier [2010]. Define a probability

space (Ω,F ,Q) such that (Xt,Yt) and St are independent under the probability measure Q. More

explicitly, (Xt,Yt) are defined on the probability space (Ω1,F1,Q1) while St are defined on the

probability space (Ω2,F2,Q2), so we define

Ω = Ω1 × Ω2, F = F1 ⊗F2, Q = Q1 ×Q2.

In addition, for ω = (ω1, ω2) ∈ Ω, we set Xt(ω) = Xt(ω1), Yt(ω) = Yt(ω1) and St(ω) = St(ω2).

The filtrations (Ht) and (FS
t ) are redefined on (Ω1,F1,Q1) and (Ω2,F2,Q2) respectively. Therefore

we can view the investors’ filtration G = (Gt) = (Ht∨FS
t ) as the product σ-algebra (Ht×{∅,Ω2})∨

({∅,Ω1} × FS
t ) ≡ σ{A×B | A ∈ Ht, B ∈ FS

t }.
Then, we can define the original probability measure P on the space (Ω,F) by the following

Radon-Nikodym density process

dP
dQ

∣∣∣
Ft

= Lt(X,Z) := exp

(∫ t

0

a(Xs)

σ2
dZs −

1

2

∫ t

0

(
a(Xs)

σ

)2

ds

)
, (3)
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where a(x) = µ(x)− σ2

2
and Zt = log

St

S0
is the process such that

Zt

σ
is a standard Brownian motion

under Q. Indeed, it follows from Girsanov-Maruyama theorem that the process given by

Bt(ω) =
Zt(ω2)

σ
−
∫ t

0

a(Xs(ω1))

σ
ds

is a standard Brownian motion under the measure P. Hence we can easily see that St follows the

original SDE (2) under P. Now we have the following lemma.

Lemma 3.1. It follows

πt(f) =
EQ1 [f(Xt)Lt(X,Z)|Ht]

EQ1 [Lt(X,Z)|Ht]
,

where Lt(X,Z) is given by (3)5.

This lemma implies that calculation of the filter πt(f) can be reduced to the conditional ex-

pectation with respect to Ht under Q1 instead of Gt under P. The readers can see the proof in

Appendix A.1.

3.2 Formulas for the filter between events/at events

In this subsection we present a couple of formulas for the filter πt(f) := EP[f(Xt)|Gt]. One is the

filter at time between events, that is, at time t ∈ (Tn−1, Tn) and the other is at events {Tn}. For
this purpose, throughout in this subsection we focus on a fixed period [Tn−1, Tn) from (n − 1)-th

event until n-th event. Accordingly, we denote by Xs := Xs+Tn−1 (s ∈ [0, Tn − Tn−1), namely, the

solution of the next SDE

Xs = X0 −
∫ s

0
κXvdv + cWs, X0 = XTn−1 , (4)

where we set Ws := Ws+Tn−1 − WTn−1 . Similarly, let Ys := Ys+Tn−1 (s ∈ [0, Tn − Tn−1). Each

component Y i
s (i ∈ C) can be regarded as the solution of

Y i
s = Y i

0 +

∫ s

0

∫
U
δi(Xv−, Y

i
v−, u)Ki(Xv−, Y

i
v−, u)N (dv, du), Y i

0 = Y i
Tn−1

,

where N ([0, s), U) := N ([0, Tn−1 + s), U)−N ([0, Tn−1), U).

Thus the stopping time T1 := Tn − Tn−1 can be defined as the first event time of the above

“bar-model”. Denote by ξ1 ∈ {1, 2, · · · ,m} the identity of the name at time T1. We also remark

that the total intensity λall(Xt) at time t of the next event for all surviving firms can be given by

λall(Xt) =
M∑
i=1

1{τi>t}
∑
β ̸=Y i

t

λ(Y i
t ,β)

(Xt). (5)

5 More exactly, since Z is regarded as the non-random path obtained in terms of the observed market value S of

the asset, we should see Lt(X,Z) as Lt(X, z)|z=Z where

Lt(X, z) = exp

(∫ t

0

a(Xs)

σ2
dzs −

1

2

∫ t

0

(
a(Xs)

σ

)2

ds

)
.
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As a consequence, the FX
∞-conditional law of T1 is obtained as below.

Q1

(X0,Y0)

(
T1 > t|FX

∞

)
= exp

(
−
∫ t

0
λall(Xs)ds

)
, (6)

where Q1

(X0,Y0)
stands for the joint law of {Xt} and {Yt} with initial values (X0,Y0) under Q1.

Also, we mention that the density of the first event of “bar-model” is given by

lim
h→0

Q1

(X0,Y0)

(
T1 ∈ (t, t+ h], ξ1 = i, Y i

0 = α, Y i

T1
= β | FX

∞

)
h

= λ(α,β)(Xt) exp

(
−
∫ t

0
λall(Xs)ds

)
.

(7)

3.2.1 The filter between events

First, we present the formula at any time between events of the filter πt(f) := EP[f(Xt)|Gt]. As we

see below, the filter at time t ∈ (Tn−1, Tn) can be achieved from the distribution πTn−1(dx) of the

latent factor at the last event and the observed path {Su}Tn−1≤u≤t of the market value of some

financial asset or index.

Theorem 3.2. Let EQ1

(x,y)[·] be the expectation operator under the law Q1
(x,y). For t ∈ (Tn−1, Tn),

we have

πt(f) =

∫
R
EQ1

(x,YTn−1
)

[
f(Xt−Tn−1)Lt−Tn−1(X,Z) exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)]
πTn−1(dx)∫

R
EQ1

(x,Yn−1)

[
Lt−Tn−1(X,Z) exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)]
πTn−1(dx)

, (8)

where πTn−1(dx) is given below in (10) in the next Theorem and the process {Ls(X,Z)}s≥0 is defined

by

Ls(X,Z)
def
= exp

 ∫ s

0

a(Xv)

σ2
dZv − 1

2

∫ s

0

(
a(Xv)

σ

)2

dv

 , Zv = log
Sv+Tn−1

STn−1

. (9)

The proof is given in Appendix A.2.

3.2.2 The filter at some credit event

Secondly, we display the formula of the filter πTn(f) := EP[f(XTn)|GTn ] at an event time Tn.

Theorem 3.3. Let T1 := Tn − Tn−1. At the event time Tn, we have

πTn(f)

=

∫
R
EQ1

(x,YTn−1
)

[
f
(
XT̄1

)
LT̄1

(X,Z)λ
(Y ξn

Tn−1
,Y ξn

Tn
)
(XT̄1

) exp

(
−
∫ T̄1

0
λall(Xs)ds

)]
πTn−1(dx)∫

R
EQ1

(x,YTn−1
)

[
LT̄1

(X,Z)λ
(Y ξn

Tn−1
,Y ξn

Tn
)
(XT̄1

) exp

(
−
∫ T̄1

0
λall(Xs)ds

)]
πTn−1(dx)

,

(10)

where L
T1
(X,Z) is given by (9) with t = T1.

The proof is given in Appendix A.3.
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3.3 Algorithm with particle filter

In reality it is necessary to approximate the expected values appeared in Theorem 3.2 and 3.3 so

as to numerically compute the filter πt(f). Broadly, particle filter is a method to approximate the

conditional distribution P(Xt ∈ •|Gt) with some suitable discrete random measures of the form

P(Xt ∈ •|Gt) ≈
∑
p

ηpt 1xp
t

with some sample points {xpt } and their consistent stochastic “weights” {ηpt }.
In this subsection, we summarize the numerical algorithm for computing filters πt(f) in case of

f(x) = x via a particle system as in Frey and Runggaldier [2010] and Del Moral and Miclo [2000].

Originally the particle filter algorithm presented below is introduced by Crisan and Lyons [1999]

as “the minimal variance branching method6.”

The branching particle system is constructed over equally discretized time steps tk = k∆, k ∈ N
with the sequence of occupation measures {π̃tk}k=1,2,··· approximating the conditional distributions

πXtk
|Gtk

for each time step. As the filtering equations (8) and (10) are represented in recursive

form, the occupation measure π̃tk is computed from π̃tk−1
and similar procedures are repeated for

subsequent time steps. Let xk = (x1k, x
2
k, · · · , x

p
k, · · · , x

nk
k ) denotes the set of nk particles at time

tk living in the state space of X. Roughly speaking, the branching particle filter is constructed

by a two-stage procedure. In the prediction stage, for each particle xpk, one generates a trajectory

(Xp
s )tk≤s≤tk+1

governed by the SDE (4). In the updating stage, which is further divided into two

kinds of procedures depending on whether an event occurred or not, the new particle system is

constructed by letting each particle branch into a random number of offspring. The specific particle

filter algorithm is described below.

The convergence results are discussed in Bain and Crisan [2008].

In order to describe the variation of the credit rating distribution, we denote by Mα(t), α ∈
R\{D} the number of firms belonging at time t to the rating α so

∑D−1
α=1 Mα(0) = M holds.

Algorithm 3.4 (Branching Particle System). In order to derive the discrete filter distribution

{π̃tk}k=0,1,..., we have to follow the several steps:

Step 0. Initialization

Set the number n0 of initial particles, a discretized time step size ∆ and the number

{Mα(0)}α∈R\{D} of the firms for each credit rating at initial time.

Step 1. Initial discrete distribution

The initial discrete distribution π̃0 is given by the occupation measure of n0 particles of mass

1/n0, that is, π̃0 =
1

n0

n0∑
i=1

δxi(0). Here x0 = (x1(0), x2(0), · · · , xn0(0)) represents independent

draws from the initial distribution π0 := P(X0 ∈ •).

Step 2. Prediction stage

6 In Budhiraja et al. [2007], the algorithm is called “variance reduction scheme: a branching particle filter.”
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Given the particles xk = (x1k, x
2
k, · · · , x

nk
k ) at time tk, generate nk independent trajectories(

Xs

)
0≤s≤∆

=
((

X1
s

)
0≤s≤∆

,
(
X2

s

)
0≤s≤∆

, · · · ,
(
Xnk

s

)
0≤s≤∆

)
such that, for each p ∈ {1, · · · , nk},

Xp
s starts from xpk at time 0 and then follows the SDE of Xt given by (1).

Thus the estimated total intensity {λall(Xp
s )}0≤s≤∆, defined by (5), can be obtained of the form

λall(Xp
s ) =

∑
α∈R\{D}

Mα(tk)
∑
β ̸=α

λ(α,β)(X
p
s ).

Step 3. Updating stage

Given the new observation (Ss)tk≤s≤tk+1
, or Zs = log

Ss+tk
Stk

, compute w̃p
k+1 for each Xp

s ob-

tained in the last prediction stage as

w̃p
k+1 = Ltk+1

(Xp, Z) exp

(
−
∫ ∆

0
λall(Xp

s )ds

)
= exp

(∫ ∆

0

a(Xp
s )

σ2
dZs −

∫ ∆

0

{
1

2

(a(Xp
s )

σ

)2
+λall(Xp

s )

}
ds

)
.

(In fact, the stochastic integral of the first term is calculated by Euler-Maruyama approximation

scheme with the sample trajectory obtained in the last prediction stage and the observed path

of logarithm return of the asset.) Whether some event occurred during (tk, tk+1] or not, we

redefine wp
k+1 as follows:

wp
k+1 :=

w̃p
k+1 if there is no event during (tk, tk+1],

λ
(Y ξ

tk
,Y ξ

tk+1
)
(Xp

∆)× w̃p
k+1 if an event occurs at tk+1,

where ξ indicates the identity of the firm corresponding the event.

Now we compute vpk+1 =
nkw

p
k+1∑nk

q=1 w
q
k+1

for every p = 1, · · · , nk and obtain {opk+1}p=1,··· ,nk
as

below:

opk+1 =

{
[vpk+1] with probability 1 + [vpk+1]− vpk+1

[vpk+1] + 1 with probability vpk+1 − [vpk+1]

where [v] stands for the integer part of v.
Denote by nk+1 =

∑nk
p=1 o

p
k+1 the total number of particles at time tk+1.

Then each particle xpk at time tk independently generates opk+1 offspring of
(
Xp

s

)
0≤s≤∆

starting

at xpk for every p = 1, · · · , nk and denote by xk+1 = (x1k+1, x
2
k+1, · · · , x

nk+1

k+1 ) all the realized

random samples of X∆.

Thus one can achieve the approximated discrete distribution at tk+1 as

π̃tk+1
=

1

nk+1

nk+1∑
p=1

δxp
k+1

.

Furthermore, in order to calculate the total intensity λall(Xtk+1
) at the next time, we obtain

the cardinality at the next time as Mα(tk+1) := Mα(tk)−1 and Mβ(tk+1) := Mβ(tk)+1 if one

transition from the rating α to β occurred during (tk, tk+1].

9



Step 4.

Proceed from k to k + 1 and go to Step 2 until some time horizon.

In Step 3, the updating stage, each particle is replaced by the particles of which the number is

randomly given by op. This procedure is worked in a consistent manner; particles with small weights

wp have almost zero offspring while those with large weights are replaced by several offspring. We

mention that most of the calculation time with our algorithm is caused by sampling of the random

number op in the updating stage.

4 Preliminaries for empirical analysis with rating transition his-

tory of Japanese enterprises

In this section we prepare the model parameters necessary for filtering. First, based on the one year

transition probability matrix, we compute the constant generator matrix which can be considered

as the rating transition rate matrix for the case of standard macroeconomic condition. Next, in

order to introduce the dynamics, specify the function (functional) form of the intensity matrix

and then estimate the parameters to fit with the credit cycle. Finally stochastic dynamics of the

macroeconomic factor Xt and market index St are specified. Here we refer the Tokyo Stock Price

Index (TOPIX) for the estimation of the model parameters of St.

4.1 Intensity matrix of rating transitions

Most Japanese portfolio managers keep track of the rating transitions announced by the rating

agency R&I. Therefore, in our empirical study, we focus on the history of credit rating transitions

of Japanese companies given by R&I, which is available with Bloomberg. Table 1 displays one year

rating transition probability matrix P (1) released by R&I in 2012.

Table 1: One year rating transition probability matrix P (1) released by R&I in 2012.

AAA AA A BBB BB B CCC Default

AAA 0.909686 0.090314 0 0 0 0 0 0

AA 0.008859 0.939353 0.051107 0.000681 0 0 0 0

A 0.000145 0.018317 0.940544 0.038959 0.001454 0 0 0.000581

BBB 0 0.000286 0.036582 0.934267 0.027151 0.000429 0 0.001286

BB 0 0 0.002558 0.079284 0.865729 0.025575 0.001279 0.025575

B 0 0 0 0.007634 0.099237 0.770992 0.007634 0.114504

CCC 0 0 0 0 0 0.047619 0.880952 0.071429

Default 0 0 0 0 0 0 0 1

10



We suppose that the transition rates are governed by the latent macro factor Xt. In order to

peruse the filtering algorithm described in the Section 3.3 numerically, we need to determine the

transition rate functions. For a given P (t), we want to find transition rate matrix Q = (qi,j)1≤i,j≤8

which satisfies

P (t) = exp(tQ).

As we can see in Section 8.3 in [2003], one of the most numerically robust estimation methods is the

fitting of the transition rate matrix approximately, i.e., Q̂ can be obtained by solving the following

optimization problem.

minimize ∥ P (1)− eQ ∥2
subject to qi,j ≥ 0 ∀i, j ∈ {1, 2, · · · , 8}, i ̸= j,

qi,i = −
∑
j ̸=i

qi,j ∀i ∈ {1, 2, · · · , 7},

q8,j = 0 ∀j ∈ {1, 2, · · · , 8}.

Here the ∥ · ∥2 - norm is defined as the square root of the sum of the squared elements of matrix.

An initial value Q0 for optimization algorithm is set as Q0 = UΓU−1 with U = [u1, u2, · · · , u8] and
Γ = diag(γ1, · · · , γ8), where γi is an eigenvalue of P (1) and ui is the corresponding eigenvector.

This depends on the fact that if there exists a non-singular matrix U and a diagonal matrix Γ

satisfying P = UΓU−1, then a matrix Q that satisfies P = expQ can be also diagonalised with U .

As a result, we achieve the approximated matrix Q̂ as follows

Q̂ =



−0.0958 0.096 6.92e−9 7.55e−5 2.14e−6 −6.77e−8 1.60e−9 1.69e−6

0.009 −0.067 0.054 0.0005 4.44e−5 5.46e−7 3.40e−8 1.85e−5

6.48e−5 0.019 −0.066 0.041 0.001 2.7e−5 4.08e−7 0.0008

2.53e−6 9.35e−5 0.039 −0.073 0.030 2.11e−5 4.36e−6 0.001

6.04e−8 2.04e−5 0.001 0.088 −0.078 0.031 0.002 0.025

4.68e−9 2.47e−6 0.0001 0.003 0.122 −0.336 0.009 0.128

6.71e−11 9.11e−8 6.51e−6 6.92e−5 3.21e−8 0.056 −0.127 0.071

0 0 0 0 0 0 0 0


.

Here the approximated transition probability exp Q̂ is given by

exp Q̂ =



0.909075 0.088396 0.002395 0.000126 0.000006 0.000000 0.000000 0.000003

0.008509 0.939250 0.050584 0.001530 0.000085 0.000000 0.000000 0.000040

0.000143 0.018155 0.940466 0.038797 0.001569 0.000044 0.000002 0.000826

0.000000 0.000440 0.036379 0.934240 0.027090 0.000419 0.000028 0.001400

0.000000 0.000006 0.002825 0.079083 0.865642 0.025391 0.001594 0.025420

0.000000 0.000000 0.000325 0.007303 0.099262 0.770997 0.007646 0.114460

0.000000 0.000000 0.000014 0.000226 0.002850 0.046138 0.880572 0.070199

0 0 0 0 0 0 0 1


.

The approximation error is ∥ P (1)− eQ̂ ∥2= 0.004866, seems sufficiently accurate.
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In view of the low sample of default events occurred in both AAA and AA, we merged them

into one credit rating class. The new credit rating class is denoted by AAA&AA. In addition,

given the low sample of firms granted the rating B and CCC, we merged these rating classes

into one rating class and write as B&CCC. Therefore the new set of ratings is redefined as R̃ =

{AAA&AA,A,BBB,BB,B&CCC,D} = {1, 2, 3, 4, 5, 6} and the new transition rate matrix Q̃ =

(q̃i,j)1≤i,j≤6 can be derived with the relations;

q̃1,1 = q̂1,1 + q̂1,2 + q̂2,1 + q̂2,2, q̃1,β = q̂1,β + q̂2,β (3 ≤ β ≤ 5), q̃1,5 = q̂1,6 + q̂1,7 + q̂2,6 + q̂2,7,

q̃α,1 = q̂α,1 + q̂α,2 (3 ≤ α ≤ 5), q̃5,1 = q̂6,1 + q̂6,2 + q̂7,1 + q̂7,2, q̃5,β = q̂6,β + q̂7,β, (3 ≤ β ≤ 5),

q̃5,5 = q̂6,6 + q̂6,7 + q̂7,6 + q̂7,7.

We conclude that the resulting matrix is

Q̃ =



−0.0545 0.0538 6e− 04 5e− 05 6.5e− 07 0.0000202

0.0194 −0.0627 0.0414 1e− 03 3e− 05 0.00081

1e− 04 0.0388 −0.0701 0.0301 3e− 05 0.00104

2e− 05 0.0014 0.0880 −0.1475 0.0328 0.02533

2.6e− 06 0.0002 0.0033 0.1216 −0.3246 0.19955

0 0 0 0 0 0


.

4.2 Specification of event intensities and preliminary analysis

According to R&I, since P (1) is estimated from the data recorded during 34 years between 1978

and 2011, we can consider this intensity matrix Q̃ as the transition rate matrix conditional to

standard macroeconomic state X = 0. The next step is to construct Q̃(x) as a continuous function

of x ∈ SX , where SX denotes the state space of X, preserving some conditions such as described

in Section 2.2.

4.2.1 Dynamic event intensities

We specify the event intensities λα,β(Xt))1≤α,β≤D, where the intensities are classified into three

types of events; upgrade, downgrade and default. First, for an upgrade (α, β) ∈ (R\{D})2 with

α > β, we assume that the function λ(α,β)(x) is decreasing in x and α−β. Second, for a downgrade

(α, β) ∈ (R\{D})2 with α < β, we assume that the function λ(α,β)(x) is increasing in x and is

decreasing in β −α. And last, for a default (α,D) ∈ (R\{D})×{D}, we assume that the function

λ(α,D)(x) is increasing in x and is increasing in α.

We first formulate the default intensity processes λY i
t ,D

(Xt) depending on the macroeconomic

state Xt at time t. Suppose that the firm i, classified into the rating α at time t, has the default

intensity λα,D(Xt) expressed as

λα,D(x) = λα,D · exp(Cα,D · x),

for λα,D, Cα,D ∈ R+ to be estimated. Similarly, suppose that α rated firm i at time t has the rating

transition intensities λα,β(x) expressed as

λα,β(x) =

{
λα,β · exp(C⇂ · x) if α < β ,

λα,β · exp(−C↾ · x) if α > β ,

12



for λα,β, C⇂, C↾ ∈ R+ to be estimated. Then the transition rate matrix can be expressed as
−λ1,1(Xt) λ1,2(Xt) λ1,3(Xt) · · · λ1,6(Xt)

λ2,1(Xt) −λ2,2(Xt) λ2,3(Xt) · · · λ2,6(Xt)
...

...
...

...

λ5,1(Xt) λ5,2(Xt) λ5,3(Xt) · · · λ5,6(Xt)

0 0 0 · · · 0



=



λ1,1(Xt) λ1,2e
C⇂Xt λ1,3e

C⇂Xt λ1,4e
C⇂Xt λ1,5e

C⇂Xt λ1,6e
C1,6Xt

λ2,1e
−C↾Xt λ2,2(Xt) λ2,3e

C⇂Xt λ2,4e
C⇂Xt λ2,5e

C⇂Xt λ2,6e
C2,6Xt

λ3,1e
−C↾Xt λ3,2e

−C↾Xt λ3,3(Xt) λ3,4e
C⇂Xt λ3,5e

C⇂Xt λ3,6e
C3,6Xt

λ4,1e
−C↾Xt λ4,2e

−C↾Xt λ4,3e
−C↾Xt λ4,4(Xt) λ4,5e

C⇂Xt λ4,6e
C4,6Xt

λ5,1e
−C↾Xt λ5,2e

−C↾Xt λ5,3e
−C↾Xt λ5,4e

−C↾Xt λ5,5(Xt) λ5,6e
C5,6Xt

0 0 0 0 0 0


where the diagonal elements are given by

λα,α(Xt) = −

(∑
α<β

λα,βe
C⇂Xt +

∑
α>β

λα,βe
−C↾Xt + λα,De

Cα,DXt

)
.

4.2.2 Joint calibration of CαD, C⇂, C↾

We split the historical rating transitions data recorded by R&I from April 1998 to March 2012

into two portions of data sets. The first one, starting from April 1998 and ending in March 2008,

is devoted to the estimations of the parameters employing transition intensities as described in

previous subsection. The second one, starting from April 2008 and ending in March 2012, is used

for filtering. Based on the rating history available with Bloomberg, the number of transition change

events between the states in R̃ = {1, 2, 3, 4, 5, 6} are summarized in Table 2.

Table 2: The number of transition change events recorded by R&I. (Source: Bloomberg)

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Up grade 4 10 9 7 3 5 18 24 51 39 10

Down grade 170 76 17 55 52 20 15 13 8 6 40

population 812 756 737 687 674 637 608 611 623 650 673

rate(Up) 0.005 0.013 0.012 0.010 0.005 0.008 0.03 0.039 0.082 0.060 0.015

rate(Down) 0.21 0.101 0.023 0.080 0.078 0.031 0.025 0.021 0.013 0.009 0.059

Let T ∈ {1998, 1999, · · · , 2008} denotes the one year period and PD(α, T ), PDG(T ) and PUG(T )

denote the historical default probability of rating α, historical downgrade event probability of all

the rating and historical upgrade event probability of all the rating during the period T respectively.

We want to find parameters set Θ = {{Cα,D}α=1,··· ,5, C⇂, C↾} which control functions λα,β(x) so as

to explain historical rating transition data suitably. For this purpose, we consider 18 parameters

X1998, X1999, · · · , X2008, Cα,D(α = 1, · · · , 5), C⇂, C↾ jointly and minimize the value evaluated by the

following function A : R18 → R.

A({XT }T =1999,··· ,2008,Θ)
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=

2008∑
T =1998

5∑
α=1

([
1− exp(−λα,De

Cα,DXt)
]
− PD(α, T )

)2

+

2008∑
T =1998

(∑
α<β

[
1− exp(−λα,βe

C⇂Xt)
]
− PDG(T )

)2

+

2008∑
T =1998

(∑
α>β

[
1− exp(−λα,βe

−C↾Xt)
]
− PUG(T )

)2

.

Thus Θ can be estimated by solving the following optimization problem.

min
XT ,Θ

A({XT }T =1999,··· ,2008,Θ)

subject to XT ∈ SX , {CαD}α=1,··· ,5, C⇂, C↾ ≥ 0

The results are shown in Table 3 and we also mention that the above minimization is almost

independent of the choice of the initial values.

Table 3: Estimated parameter set Θ

C1D C2D C3D C4D C5D C⇂ C↾
1.7102 4.6344 5.4332 3.3367 2.9750 2.3673 4.0739

4.3 Specification of the dynamics of St and Xt

As mentioned above, we refer to TOPIX as the asset price process {St} governed by 2. The volatility

σ of TOPIX return can be determined by the sample standard deviation of historical daily return√
Var[log(St+1/St)]. However, determination of κ, c and µ(x) is not straightforward. Assume

µ(x) = tanh(−µx) (11)

to achieve µ(x) < 0 when x > 0, and µ(x) > 0 when x < 0. And then take six month moving

average of the TOPIX denoted by MA(t) and their daily return {µ̂t}t=1,2,··· as follows.

MA(t) :=
1

21× 6

t∑
s=t−21×6

TOPIX(s),

µ̂t := log
MA(t+ 1)

MA(t)
.

In order to estimate the parameter µ which controls the trend of the TOPIX return, we assume that

the series {µ̂t}t=1,2,··· are realizations of {µ(Xt)}t=1,2,···, where the random variables {Xt}t=1,2,··· has

the density

f(x) =

√
κ

πc2
exp

(
− κ

c2
x2
)
,

which represents the steady state of the OU process Xt. Let Di be the empirical percentile points

defined by Di = P(µ̂ > xi) for arbitrary selected real values xi ∈ (−∞,∞) and Mi be theoretical
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percentile points defined by Mi = P(µ(X) > xi), X ∼ N
(
0, c2

2κ

)
, for i = 1, 2, · · · , N . Then the

parameters κ, c and µ can be estimated by solving the following minimization problem

min
κ,c,µ

N∑
i=1

(Di −Mi)
2

subject to κ > 0, c > 0, µ > 0,

and the estimated parameters are displayed in Table 4.

Table 4: Estimated parameters

κ c µ σ

1.8548 0.1814 2.7142 0.2291

5 Results and considerations

5.1 Transitions of filtered Xt

In this section we illustrate the numerical results based on the credit rating history of Japanese

companies and the historical TOPIX data. In order to pursue the particle filter algorithm, we take

n0 = 10000 and ∆ = 1/365. All the other parameters are set to the values specified in Section 4.

Figure 1 shows the historical data of logarithm of daily TOPIX and the timing of events such as

upgrade, downgrade and default captured by R&I.

In Figure 1, the dates when defaults, upgrades and downgrades occurred are indicated with the

mark “ ◦ ”, “ ∗ ” and “ + ” respectively. For example, the first upgrade event marked with “ ∗ ” at

the far left in the Figure 1 shows that one upgrade event occurred on April 4, 2009.

For reader’s convenience, based on not only R&I data but also information available such as

in Japanese news website, we compiled past defaults occurred during the second term (from April

2008 to March 2012) in Table 5. Since the credit ratings granted just before default are not easy to

fix, we duplicated them so as to be consistent with the cohort data of NEWS RELEASE published

by R&I. For example, Aiful Corporation went into default on September 9, 2009 and its credit

rating given by R&I just before the default was BB. This is also displayed with the mark “ ◦ ” in

Figure 1. We mention that from April 2010 to March 2012, there was no default within the firms

that R&I had granted a rating.

Table 5: The past defaults occurred from April 2008 to March 2012.

Date May 29, 2009 Sep. 18, 2009 Sep. 19,2009 Dec. 25, 2009 Jan. 19, 2010

Defaulted firm Joint Corp. Aiful Corp. Willcom Takefuji Japan Air Line

Credit rating BBB BB BBB BBB BB

Figure 2 illustrates the transitions of the percentile points of the occupation measure π̃t calcu-

lated every day from April 1, 2009 to March 31, 2012. Quick overview of both figures demonstrate

that the down grade events and default events tend macroeconomic factor process Xt under the
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Figure 1: Observables

investor’s filtration Gt to increase, while the upgrade events tend Xt to decrease. When no events

are observed, we can see that Xt simply obey the SDE (1) and then Xt is forced to revert to the

long-run average level 0.

The default contagion, directly induced by the jump up of Xt, can be captured by this model.

How the default intensity of the surviving firms may change from before and after a default can be

calculated at each time of the default as follows. Default intensity for rating class α, evaluated just

before default τ is given by λ̂α,D(τ−) = E[λα,D(Xτ−)|Gτ−] and evaluated just at τ is λ̂α,D(τ) =

E[λα,D(Xτ )|Gτ ]. Table 6 shows the default contagion effect, i.e., the changes of filtered default

intensity for each rating class just before and after the default of the firm listed in the left side

of the table. For instance, the default intensity of the rating class 5 (B and CCC) in our model,

jumps upward from 9.859% to 11.063% due to the default of the Aiful Corporation.

5.2 Does TOPIX give additional information for the filtering?

We next examine if daily observation of TOPIX brings about additional information for the filtering.

Figure 3 illustrates the transitions of some percentile points of the occupation measure π̃t without

TOPIX for the same period as Figure 2 with TOPIX. Different from Figure 2, it is worth noting

that the filtered Xt without TOPIX moves upwards or downwards monotonically during no credit

events.

For a comparison between Figure 2 and 3, let us focus on the period from April 1, 2010 to July

30, 2010. During the three months sandwiched between a couple of adjacent downgrades, no credit

event was observed. As is seen from Figure 1, TOPIX displays the downward trend during this
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Figure 2: Filterd Xt

Table 6: Default contagion effects

Before/After the default of Rating 1 Rating 2 Rating 3 Rating 4 Rating 5

Joint Corporation Before 0.0020% 0.061% 0.160% 4.576% 10.575%

(BBB) After 0.0021% 0.067% 0.177% 4.872% 11.183%

Aiful Corporation Before 0.0019% 0.056% 0.143% 4.235% 9.859%

(BB) After 0.0020% 0.066% 0.176% 4.819% 11.063%

Willcom Before 0.0020% 0.066% 0.176% 4.819% 11.063%

(BBB) After 0.0022% 0.079% 0.217% 5.479% 12.406%

Takefuji Before 0.0020% 0.066% 0.175% 4.786% 10.992%

(BBB) After 0.0021% 0.175% 0.205% 5.273% 11.983%

Japan Air Line Befire 0.0019% 0.058% 0.151% 4.362% 10.118%

(BB) After 0.0021% 0.069% 0.184% 4.944% 11.315%

period, implying that it would be appropriate to suppose that the macroeconomic state actually

deteriorated in this period. These facts would be consistent with the equation (11), which assumed

that TOPIX has downward trend when the macroeconomic factor stays in a bad state and vice

versa.

Therefore we expect that the observation of some market index such as TOPIX could help

to supplement some information about the latent macro factor Xt while no event information is
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updated. In Figure 4 and 5, we compare the estimated distribution functions of the π̃ for both with

and without TOPIX observations, respectively at the beginning date and the ending one of the

focused period. It appears from Figure 4 that on April 1, 2010, π̃t filtered with TOPIX observation

is upper than that without TOPIX. To the contrary, π̃t with TOPIX observation is much lower

than that without TOPIX on July 30, 2010. This result implies that the filtering with TOPIX may

capture a deterioration trend of the latent macro factor during the period more precisely. Thus we

can mention that TOPIX is to some extent worth observing for a better filtering of Xt. If we can

find a more informative and observable index than TOPIX, it is likely that the accuracy of the

filter will be more improved. 7
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Figure 3: Filtered Xt: Without observations of TOPIX

5.3 Sensitivity analysis

In this subsection, we investigate a kind of robustness with respect to each of the model parameters

via some numerical illustrations. More specifically, we see the impact on the filtering of overestimat-

7 In order to quantitatively judge which model with or without TOPIX should be selected, we tentatively applied

the Bayes factor criterion (refer to Jeffreys [1961] for example), that is recently applied to a nonlinear filtering with

point process observation by Scott and Zeng [2011] due to its computational tractability. For two comparative models,

the Bayes factor is defined by the ratio of integrated likelihood of one model (the model with TOPIX in our case)

to that of the other (the model without TOPIX). Kass and Raftery [1995] suggested that if the Bayes factor takes

a value more than three, it can be concluded that the former is better than the latter. In our case, we indeed found

that the approximated Bayes factor almost always takes values around one. Therefore we cannot conclude from the

Bayes factor that the model with TOPIX is more significant than that without TOPIX.
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Figure 4: CDF of π̃t as of April 1, 2010
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Figure 5: CDF of π̃t as of July 30, 2010

ing or underestimating the model parameters σ, µ, κ and c by changing the value of each parameter

upwards or downwards from its base value summarized in Table 4. First, we examine the sensitivity

with respect to the volatility σ and the drift µ of the TOPIX process {St}. It appears from Figure 6

and 7 that the approximated filter π̃t is more sensitive to σ than µ since the 40%-60% range of the

approximated filters of the case with σ = 0.1 and σ = 0.3 are not overlapped in some periods. In

addition, it seems that the larger σ, the more uncertain but the less sharply approximated filter

π̃t fluctuates. Thus, the result indicates that the estimation of the asset price volatility is more

important for the filtering.
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Base case (40−60% tile)

40% tile with σ = 0.1
60% tile with σ = 0.1
40% tile with σ = 0.3
60% tile with σ = 0.3

Figure 6: σ=0.1 or 0.3 with fixed µ, κ, c

Second, we see if the approximated filter π̃t is sensitive to the rate κ of mean reversion and the

volatility c of the latent macro factor {Xt}. Figure 8 displays that π̃t fluctuates more sharply as

κ gets smaller. Similarly, Figure 9 shows that π̃t fluctuates more sharply as c gets larger. It goes

without saying that the results are consistent with the characteristics of the mean-reverting model
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Base case (40−60% tile)

40% tile with µ = 4
60% tile with µ = 4
40% tile with µ = 1
60% tile with µ = 1

Figure 7: µ=4 or 1 with fixed σ, κ, c

because the larger κ and the smaller c imply that Xt is unlikely to be away from zero for a long

time.
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Base case (40−60% tile)

40% tile with κ = 0.5
60% tile with κ = 0.5
40% tile with κ = 3
60% tile with κ = 3

Figure 8: κ=0.5 or 3 with fixed σ, µ, c

6 Concluding remarks

Our contribution of this study to the field of credit risk research is summarized as follows. First, we

introduce a new filtering model that assumes some latent macroeconomic factor has some influence

on the frequency of credit rating transition events as well as default events. Since rating transition

events are likely to be observed more often than default, the conditional distribution of the latent

factor is expected to be estimated more accurately with observations on rating transition. Also,

this model can contain some covariates like stock indices continuously observed in the market so as
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Base case (40−60% tile)

40% tile with c = 0.3
60% tile with c = 0.3
40% tile with c = 0.1
60% tile with c = 0.1

Figure 9: c=0.3 or 0.1 with fixed σ, µ, κ

to supplement information of the latent factor while no credit event happens. This implies that if

we select a suitable continuous process related to the credit cycles, it is probable that such a more

frequent observation from the market can improve the accuracy of filtering of the latent factor.

Second, we illustrate via some empirical analyses that our model is practically useful and

tractable to examine what is related to occurrence of credit events for each rating category. Specif-

ically, we naively apply a branching particle filter technique with historical data of credit rating

transition and defaults in Japan to achieve the best estimate of the unobservable macroeconomic

factor. Hence we can analyze how the credit events, the stock index, and the latent factor are

related. As a consequence of the empirical analyses, we realize that a contagion effect among credit

events as well as a relation between credit events and some financial market index are not negligi-

ble. At last, this enables us to prompt credit risk revaluation in terms of the estimated transition

probability matrix under the real-world probability measure, without referring to any credit risky

instruments traded in the market.

In addition, we have to mention a few of our future challenges. The convergence of the branching

particle filter has not been argued in this paper, although it will be resolved by a discussion similar

to the previous studies (for instance, Bain and Crisan [2008] and Xiong and Zeng [2011]). It is

too technical to mention in this paper, so we will be ready for another paper for discussing such a

theoretical issue.

From an empirical viewpoint, we try to look for a more suitable observable factor than TOPIX

for improving the predictive accuracy of credit rating changes. This seems relevant to investigating

what the latent factor really is.

Moreover, we may need to extend the model so that several observable and/or unobservable

factors can be contained. In fact, the particle filter method has an advantage for high-dimensional

problem, so an extension to multi-dimensional case cannot be an obstacle to numerical analysis.
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A Proofs

Hereafter we will write Lt(ω1, ω2) for Lt(X(ω1), Z((ω2)) in spite of abuse of notation.

A.1 Proof of Lemma 3.1

It follows from Kallianpur-Striebel formula that

πt(f)(ω) := EP
[
f(Xt)

∣∣Gt

]
(ω) =

EQ[f(Xt)Lt | Gt](ω)

EQ[Lt | Gt](ω)
.

As we remark that Q = Q1 ×Q2, all we have to show is

EQ1×Q2

[
f(Xt)Lt(·, ·)

∣∣∣Ht ∨ FS
t

]
(ω1, ω2) = EQ1

[
f(Xt)Lt(·, ω2)

∣∣∣Ht

]
(ω1). (12)

Fix A ∈ Ht and B ∈ FS
t arbitrarily. We have∫

A×B
EQ1×Q2

[
f(Xt)Lt(·, ·)

∣∣∣Ht ∨ Gt

]
(ω1, ω2)d(Q1 ×Q2)(ω1, ω2)

=

∫
A×B

f(Xt(ω1))Lt(ω1, ω2)d(Q1 ×Q2)(ω1, ω2)

=

∫
Ω1×B

1A(ω1)f(Xt(ω1))Lt(ω1, ω2)d(Q1 ×Q2)(ω1, ω2)

=

∫
Ω1×B

EQ1×Q2

[
1Af(Xt)Lt(·, ·)

∣∣∣FS
t

]
(ω1, ω2)d(Q1 ×Q2)(ω1, ω2).

Here we define8 for w ∈ Ω2

φA(w) := EQ1 [1A(ω1)f(Xt(ω1))Lt(ω1, w)] .

We should note that

φA(w) = EQ1 [1A(ω1)f(Xt(ω1))Lt(ω1, w)]

=

∫
A
f(Xt(ω1))Lt(ω1, w)dQ1(ω1)

=

∫
A
EQ1

[
f(Xt)Lt(·, w)

∣∣Ht

]
(ω1)dQ1(ω1).

Then it follows from Fubini’s theorem and the last note∫
Ω1×B

EQ1×Q2

[
1Af(Xt)Lt(·, ·)

∣∣∣FS
t

]
(ω1, ω2)d(Q1 ×Q2)(ω1, ω2)

8 In general, for any B-measurable random variable X and any random variable Y independent of B and a Borel

function Φ with E[|Φ(X,Y )|] < ∞,

E[Φ(X,Y )|B] = φ(X) a.s. φ(x) := E[Φ(x, Y )]

(See the appendix of Lamberton and Lapayre [1996].)
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=

∫
Ω1×B

φA(ω2)d(Q1 ×Q2)(ω1, ω2)

Fubini
=

∫
Ω1

dQ1(ω1)

∫
B
φA(ω2)dQ2(ω2)

=

∫
B
φA(ω2)dQ2(ω2)

=

∫
B

{∫
A
EQ1

[
f(Xt)Lt(·, w)

∣∣Ht

]
(ω1)

} ∣∣∣
w=ω2

dQ2(ω2)

Fubini
=

∫
A×B

EQ1

[
f(Xt)Lt(·, w)

∣∣∣Ht

] ∣∣∣
w=ω2

(ω1)d(Q1 ×Q2)(ω1, ω2).

Due to the arbitrariness of A and B, equation (12) holds.

A.2 Proof of Theorem 3.2

It follows from Lemma 3.1 that

πt(f) =
EQ1 [f(Xt)Lt|Ht]

EQ1 [Lt|Ht]
.

Since we notice

πt(f) = EP[f(Xt)|Gt] =

∫
R
f(x)πt(dx),

we can see that the following equality holds at time Tn−1:

EQ1 [LTn−1f(XTn−1)|HTn−1 ] = EQ1 [LTn−1 |HTn−1 ]

∫
R
f(x)πTn−1(dx). (13)

Moreover we can see Ht = HTn−1 ∨ σ{Tn ∧ s | s ≤ t} for t ∈ [Tn−1, Tn). In general, it follows from

Dellacherie formula that for any F∞-integrable random variable U ,

EQ1 [U1{Tn>t}|Ht] = 1{Tn>t}
EQ1 [U1{Tn>t}|HTn−1 ]

EQ1 [1{Tn>t}|HTn−1 ]
.

Now we can apply the above result to the numerator EQ1 [f(Xt)Lt|Ht] of (A.2) by setting U =

f(Xt)Lt for t ∈ [Tn−1, Tn). Since Ht ⊂ Ft, Lt is Ft-measurable, we have for t ∈ [Tn−1, Tn),

EQ1 [f(Xt)Lt|Ht]

= EQ1 [f(Xt)Lt1{Tn>t}|Ht] =
EQ1

[
f(Xt)Lt1{Tn>t}|HTn−1

]
EQ1

[
1{Tn>t}|HTn−1

]
=

EQ1

[
EQ1

[
f(Xt)Lt1{Tn>t}|FTn−1

] ∣∣∣ HTn−1

]
EQ1

[
1{Tn>t}|HTn−1

]
=

EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
f(Xt−Tn−1)Lt−Tn−11{T1>t−Tn−1}

] ∣∣∣ HTn−1

]
EQ1

[
1{Tn>t}|HTn−1

]
=

EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
f(Xt−Tn−1)Lt−Tn−1E

Q1

(XTn−1
,YTn−1

)

[
1{T1>t−Tn−1}

|FX
∞

]] ∣∣∣ HTn−1

]
EQ1

[
1{Tn>t}|HTn−1

]
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=

EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
f(Xt−Tn−1)Lt−Tn−1 exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)] ∣∣∣ HTn−1

]
EQ1

[
1{Tn>t}|HTn−1

] .

The equality (6) in the beginning of subsection 3.2 justifies that the conditional expectation under

Q1 is changed to the expectation under Q1
(XTn−1

,YTn−1
) in the last third equality. Finally applying

the relation (13) to the numerator of the last term implies

EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
f(Xt−Tn−1)Lt−Tn−1 exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)] ∣∣∣ HTn−1

]
= EQ1 [LTn−1 |HTn−1 ]

∫
R

EQ1

(x,YTn−1
)

[
f(Xt−Tn−1)Lt−Tn−1 exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)]
πTn−1(dx).

As for the denominator of (A.2), due to the same argument, we have

EQ1 [Lt|Ht]

=
1

EQ1

[
1{Tn>t}|HTn−1

]EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
Lt−Tn−1 exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)] ∣∣∣ HTn−1

]
=

EQ1 [LTn−1 |HTn−1 ]

EQ1

[
1{Tn>t}|HTn−1

] ∫
R

EQ1

(x,YTn−1
)

[
Lt−Tn−1 exp

(
−
∫ t−Tn−1

0
λall(Xs)ds

)]
πTn−1(dx).

And then
EQ1 [LTn−1 |HTn−1 ]

EQ1

[
1{Tn>t}|HTn−1

] is cancelled between the numerator and the denominator of (A.2),

so we can obtain Equation (8).

A.3 Proof of Theorem 3.3

The argument is almost similar to the proof of Theorem 3.2, so we just mention the crucial part

below. We should remark that HTn = HTn−1 ∨ σ(Tn, ξn, Y
ξn
Tn

). Because of the Equality (7), we can

see

EQ1

[
f(XTn)LTn

∣∣HTn

]
= EQ1

[
f(XTn)LTn

∣∣HTn−1 ∨ σ(Tn, ξn, Y
ξn
Tn

)
]

= EQ1

[
LTn−1EQ1

[
f(XTn)

LTn

LTn−1

∣∣∣ FTn−1 , Tn, ξn, Y
ξn
Tn

] ∣∣∣ HTn−1 , Tn, ξn, Y
ξn
Tn

]
= EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
f(XT1)LTn−Tn−1

∣∣∣ T1 = Tn − Tn−1, ξ1, Y
ξ1

T1

] ∣∣∣ HTn−1 , Tn, ξn, Y
ξn
Tn

]
∝ EQ1

[
LTn−1E

Q1

(XTn−1
,YTn−1

)

[
f(XT1)LTn−Tn−1λ

(Y
ξ1
0 ,Y

ξ1

T1
)
(XTn−Tn−1) exp

(
−
∫ Tn−Tn−1

0
λall(Xs)ds

)]
∣∣∣∣∣ HTn−1 , Tn, ξn, Y

ξn
Tn

]

∝
∫
R
EQ1

(x,YTn−1
)

[
f
(
XTn−Tn−1

)
LTn−Tn−1λ

(Y
ξ1
0 ,Y

ξ1

T1
)
(XTn−Tn−1) exp

(
−
∫ Tn−Tn−1

0
λall(Xs)ds

)]
πTn−1(dx).

This immediately concludes the proof.
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