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Abstract

In the top-down approach of portfolio credit risk modeling, we as-
sess credit risks of sub-portfolios with the so-called random thinning
model, which dissects the portfolio risk into sub-portfolio contribu-
tions. In this paper, we provide a random thinning model incor-
porating the sub-portfolio size and the factor called “credit quality
vulnerability factor”, in order to take into account credit quality vul-
nerability of sub-portfolios. With our random thinning model, we
estimate credit quality vulnerability of industrial sectors. Numerical
examples on assessing the risks of several credit portfolios show that
our random thinning model is useful to detect how the proportions of
constituent industrial sectors affect portfolio credit risks.

1 Introduction

Quantitative credit risk model is essential for financial institutions to quantify
and control their credit exposure. In the literature of modeling credit risk for
portfolios, there are two different paradigms of “bottom-up” and “top-down”.

In bottom-up approaches, we start to model credit risk of each obligor
who is a constituent of some credit portfolio, and then we aggregate all the

1Views expressed are those of authors and do not necessarily reflect those of the authors
employers. Any errors or omissions are the responsibility of the authors.
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risks of obligors in the portfolio to assess the portfolio-level credit risk in
consideration of dependence structure among the portfolio constituents (for
example, see Duffie and Singleton [2], Lando [10]).

On the other hand, often in top-down approach, an intensity-based model
of the total credit loss point process in the underlying portfolio is primarily
specified without reference to the portfolio constituents, and (if necessary)
the procedure called random thinning is used to obtain individual intensities
of the sub-portfolio or the portfolio constituents.

The purpose of this paper is to construct a new random thinning model
in the top-down framework so as to precisely assess credit event risk of sub-
portfolios in the economy-wide portfolio.

Credit risk modeling within the top-down approach, suggested by Giesecke
et al.[4], starts with constructing portfolio-level (or economy-level) loss point
processes, rather than loss point processes for the portfolio constituent oblig-
ors. Since Giesecke et al.[4], the literature on top-down approach credit risk
modeling has expanded: Errais et al.[3], Kunisch and Uhrig-Homburg [9],
Halperin and Tomecek [7], Nakagawa [12, 13], Kaneko and Nakagawa [8],
Giesecke and Kim [5, 6], Yamanaka et al.[15, 16].

As Halperin and Tomecek [7] pointed out, a portfolio-level (or economy-
wide-level) loss process of the top-down approach is generally much easier to
calibrate to prices of credit portfolio derivatives than most aggregate portfolio
loss processes obtained with the bottom-up approach. In addition to this,
credit contagion can be readily introduced in this approach (for instance see
Giesecke et al.[4], Giesecke and Kim [5] and Yamanaka et al.[15, 16]).

For the purpose of evaluating credit risk of the sub-portfolios or the con-
stituent obligors in the top-down approach, usually used is the idea of random
thinning, that is, allocating the whole credit event intensity for the “top-
part” portfolio among the sub-portfolios or the constituents that decompose
the whole portfolio.

Various versions of the random thinning model are proposed in previous
works as follows. Giesecke et al.[4] and Halperin and Tomecek [7] proposed
piece-wise constant thinning model for calculating portfolio constituent firms
risk contribution and derived pricing formula for credit default swap (CDS)
with the model. Kunisch and Uhrig-Homburg [9] and Kaneko and Naka-
gawa [8] proposed thinning models in which the reference constituent default
probability is obtained by Merton model (see Merton [11] ); Kunisch and
Uhrig-Homburg [9] used the thinning model to derive CDS pricing formula,
while Kaneko and Nakagawa [8] did to study pricing of lending interest rate
for bank loan. Giesecke and Kim [6] used a thinning model to obtain default
intensity of the financial sector in US.

Giesecke and Kim [5] dissected the portfolio risk into sub-portfolio contri-
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butions by the thinning process specified by the weight of the sub-portfolio
constituents to the whole portfolio. With such a thinning process, they
analyzed the risk of collateralized debt obligations (CDOs) and suggested
the method of generating the credit event time samples of the target sub-
portfolios. Also they obtained default intensity of financial sectors with thin-
ning models which are driven by macroeconomic factors.

Yamanaka et al. [15, 16], similar to Giesecke and Kim [5], used the
thinning process specified by the weight of the sub-portfolio to the whole
portfolio to calculate several risk measures such as Value at Risk(VaR) and
Expected Shortfall(ES) of sub-portfolios.

Although there have been several studies on random thinning as above,
it appears insufficient to evaluate the credit risk of the sub-portfolios or
individual obligors consistently with the top-part risk evaluation. Indeed it
seems that the credit event frequency in each subset in the economy cannot
be explained only by the weight of the sub-portfolio constituents to the whole
portfolio.

Therefore, for more precise credit risk assessment of the target sub-
portfolios in the top-down framework, we try introducing a new thinning
model which is a kind of generalization of the thinning model proposed in
Giesecke and Kim [5] and Yamanaka et al. [15, 16]. Specifically the thin-
ning model is the product of a couple of components: one is the same as
the previous works, that is, the ratio of the number of constituent obligors
in the sub-portfolio to that of the whole portfolio, and the other is another
factor regarded as the vulnerability measure of credit quality of each sub-
portfolio. We call the factor “credit quality vulnerability factor (CQVF)” in
this paper. Here, the term “vulnerability” means how the credit qualities of
the portfolio constituents tend to change. Especially, we suppose a constant
CQVF ,for simplicity, associated with each of some sub-portfolios that par-
tition the economy-wide portfolio according to some similarity in industrial
classification. With such a thinning model, we examine the peculiarity of
such partitioning sub-portfolios through estimation of the constant CQVF,
so that we can confirm that it is useful to introduce CQVF to the thinning
model even though it is the simple constant case. Moreover, as a numerical
example, we simulate the future frequency of credit events for several port-
folios that have different industrial distributions, in other words, different
vulnerability of credit quality.

This paper is organized as follows. Section 2 summarizes the top-down
approach. We propose some thinning models incorporating CQVF in section
3. In section 4, we suppose that the economy-wide portfolio is partitioned
into five sub-portfolios. Under the assumption, we present the maximum
likelihood framework for estimating constant CQVFs, then estimate the con-
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stant CQVFs for the partitioning sub-portfolios with the historical data on
rating transitions of Japanese enterprises, and apply the constant CQVF
model to risk analysis of some hypothetical portfolios at last. We presents
some concluding remarks in section 5 and we discuss some complementary
topics in appendices.

Anknowledgment
This research was supported by JSPS KAKENHI(Grant-in-Aid for Sci-

entific Research(C)) No. 26330026.

2 Framework of top-down approach

In this section, we present a framework of top-down approach for credit
risk modeling. We model uncertainty in the economy on a filtered complete
probability space (Ω, F , P, {Ft}t≥0), where {Ft}t≥0 is a right-continuous
and complete filtration.

We implicitly suppose that there are countable obligors which can be faced
with some credit events2 such as defaults as well as credit rating transitions
in our credit portfolio. We denote the set of all of such obligors by S∗ =
{s1, s2, . . .}.

Let T ∗ = {Tn}n=1,2,··· be a strictly increasing sequence, with 0 < T1 <
T2 < · · · , of totally inaccessible {Ft}-stopping times. We regard the sequence
of stopping times {Tn}n=1,2,··· as the ordered credit event times observed in
the economy-wide portfolio S∗.

Moreover, we specify by N∗
t =

∑
n≥1

1{Tn≤t} the counting process of credit

events in economy-wide S∗, and suppose that N∗
t has an intensity process

λ∗
t , namely , λ∗

t is a {Ft}-progressively measurable non-negative process such
that the compensated process N∗

t −
∫ t

0
λ∗
sds is an {Ft}-local martingale. We

call λ∗
t the total intensity (process).

When we need to focus on credit events happened in some sub-portfolio
S(⊂ S∗), it is necessary to have the intensity process specified for the sub-
portfolio S, denoted by λS

t . In order to obtain such intensity, we have to
mention the procedure, which is often called a random thinning, of parti-
tioning the total intensity λt into the intensity λS

t for sub-portfolio S.

2Credit events considered hereafter are default as well as credit rating transition (down-
grade and/or upgrade). Giesecke et al.[4], Errais et al.[3], Kunisch and Uhrig-Homburg
[9], Halperin and Tomecek [7], Giesecke and Kim [5] focused on defaults. Nakagawa [12]
and Yamanaka et al.[15] focused on credit rating transitions. Kaneko and Nakagawa [8]
and Yamanaka et al.[16] considered both rating transitions and defaults.
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Assume that the set S∗ is decomposed into M(≥ 2) non-empty sub-
portfolios {Si}i=1,··· ,M so that S1 ∪ · · · ∪ SM = S∗ and Si ∩ Sj = ∅ (i ̸= j).
The random thinning is specified by an {Ft}-adapted processes {Zi

t}i=1,··· ,M
with 0 ≤ Zi

t ≤ 1 for any i = 1, · · · ,M , which satisfies the following condition:

M∑
i=1

Zi
t = 1 a.s. for any t ≥ 0. (1)

Hereafter we use simple super-indices like writing Zi
t for ZSi

t , if the sub-
portfolios are labeled by integers and not confusing.

For any sub-portfolio S, the variable ZS
t can be seen as the conditional

probability that, when a credit event occurs at time t in S∗, the event is
observed in sub-portfolio S. The process {ZS

t } is called a thinning process
associated with sub-portfolio S.

We remark that the counting process NS
t of credit events observed in

sub-portfolio S is specified by

NS
t =

∑
n≥1

1{Tn≤t}∩{Tn∈T S}, (2)

where T S stands for the set of event times observed in sub-portfolio S.
From Proposition 2.1 in Giesecke and Kim [5], the intensity associated

with the counting process NS
t is given by the process λS

t defined as follows:

λS
t = ZS

t λ
∗
t , (3)

where λ∗
t is the total intensity and ZS

t is the thinning process.
Thus the expected number given the information up to time t of credit

events happened in sub-portfolio S during the future period (s, u] (t ≤ s < u)
can be obtained by

E
[
NS

u −NS
s | Ft

]
=

∫ u

s

E
[
λS
v | Ft

]
dv =

∫ u

s

E
[
ZS

v λ
∗
v | Ft

]
dv, (4)

where E[·] stands for the expectation under the probability measure P .

3 Thinning model with credit quality vulner-

ability factor

This section introduces a thinning model for assessing credit risks of sub-
portfolios. The model is specified by portfolio size (the number of constituent
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obligors in the sub-portfolio) as well as another factor which represents a
credit quality vulnerability of the sub-portfolio.

We simply consider that the frequency of credit event occurrences depend
on the size of the portfolio. Thus, we introduce the ratio of the number of
constituents in sub-portfolio S to that of the economy-wide portfolio S∗ as
follows:

Z̃S
t =

XS
t

X∗
t

, (5)

where XS
t (resp. X∗

t ) denotes the number of obligors contained at time t in
portfolio S (resp. economy-wide portfolio S∗). The quotients (5) is taken to
be 0 when the denominator vanishes.

Although Z̃S
t itself seems a natural candidate of the thinning process for

S, we rather specify a thinning process ZS
t by

ZS
t = θSt Z̃

S
t , (6)

where {θSt }t≥0 is a positive {Ft}-adapted process3.
We can see θSt as some factor that affects credit event frequency inde-

pendent of the portfolio size effect. If θSt becomes larger, the credit event
frequency of sub-portfolio S higher and thus the credit quality of the sub-
portfolio would be more vulnerable. On the other hand, if θSt smaller, the
credit events in portfolio S happen less and thus the credit quality of S
would be less vulnerable. Hence we call θSt “Credit Quality Vulnerability
Factor (CQVF)”.

Thinning with CQVF can be applied to a single name case where S = {si}
for some si ∈ S∗.

Now, we introduce a couple examples of CQVF model4.

3In order to satisfy condition (1), the following normalization is often used:

Zi
t =

θitZ̃
i
t∑M

j=1 θ
j
t Z̃

j
t

. (7)

Though such a normalization is not supposed for our discussion below, we mention the
comparison of the estimates θSt between with and without the normalization in Appendix
B.

4As another example, Yamanaka [14] provided a piece-wise constant CQVF. θSt =

θ
S
+ ϵSt , where θ

S
is some positive constant and ϵSt is a process with piece-wise constant

path. Specifically, ϵSt = βS
j if Hj ≤ t < Hj+1 for a sequence {Hj}j=0,1,2,··· of increasing

times, where {βS
j }j=0,1,2,··· are independent and identically distributed random variables

following the same beta distribution with mean 0.
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Example 1: Constant CQVFModel The simplest is a “constant CQVF”
model, in short,

θSt ≡ θ
S
, (8)

for some positive constant θ
S
.

Remark In the case of the number of constituents in sub-portfolios changes,
the “primitive CQVF” model, namely θSt = 1 (∀S ⊂ S∗) is derived.

Consider two sub-portfolios S1 and S2 where S1 ∪ S2 = S∗, S1 ∩ S2 = ∅.
Also, we suppose the number of constituents in sub-portfolio S1 increases
in the period from t1 to t2, that is, there are t1 and t2(> t1) such that
X1

t2
−X1

t1
> 0.

Then, the following conditions should be satisfied for both t1 and t2 (see
(1)): 

X1
t1

X∗
t1

θ
1
+

X2
t1

X∗
t1

θ
2
= 1,

X1
t2

X∗
t2

θ
1
+

X2
t2

X∗
t2

θ
2
= 1.

(9)

As the solution of equation (9), we obtain θ
1
= θ

2
= 1. This simple example

indicates that non-primitive constant CQVF model assumes that the number
of constituents never changes.

Example 2: Covariate CQVF Model We are able to introduce some
covariates (whose number is denoted by K) for description of CQVF θSt . For
example, we can model θSt by

θSt = θ
S
exp

(
aS1Y

S
1,t + · · ·+ aSKY

S
K,t

)
, (10)

where θ
S
is a positive constant, and {Y S

k,t}k=1,··· ,K are the covariates observed
at time t and common to sub-portfolio S, and {aSk}k=1,··· ,K are coefficients to
be estimated. We call such a model “covariate CQVF” model.

We remark that the constant CQVF can be regarded as a special case of
the covariate CQVF (10) without covariates.

Now let us consider a single name portfolio given by S = {si} (si ∈ S∗).
Then we can construct the single name intensity λsi

t according to CQVF
model (10). For simplicity, we assume that X∗

t does not vary in time, namely
X∗

t ≡ X
∗
for some positive integer X

∗
.

First, we assume the total intensity λ∗
t is modeled as

λ∗
t = exp

(
b∗0 + b∗1Y

∗
1,t + · · ·+ b∗

M̃
Y ∗
K̃,t

)
(11)
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where {Y ∗
k,t}k=1,··· ,K̃ are covariates common to all the obligors in S∗, and

{b∗k}k=0,··· ,K̃ are coefficients. Such covariates {Y ∗
k,t}k=1,··· ,K̃ would be economy-

wide factors, for example, treasury rate, GDP, unemployment rate, and so
on.

Next, it follows from (3) and Zsi
t specified by CQVF model θSt in (10)

that the single name intensity λsi
t for sub-portfolio {si} can be described as

λsi
t = Zsi

t λ
∗
t =

Xsi
t

X∗
t

θsit λ
∗
t

=
1

X
∗ θ

si
exp

(
asi1 Y

si
1,t + · · ·+ asiKY

si
K,t

)
λ∗
t

= θ̃si0 exp
(
asi1 Y

si
1,t + · · ·+ asiKY

si
K,t + b∗1Y

∗
1,t + · · ·+ b∗

K̃
Y ∗
K̃,t

)
(12)

where θ̃si0 =
θ
si
eb

∗
0

X
∗ and {Y si

k,t}k=1,··· ,K are covariates of personal information

of obligor si, whose examples can be some financial indicators calculated
from accounting information or “distance to default” dependent on market
information such as individual stock prices.

This is consistent with the individual intensity model suggested by Duffie
et al.[1].

As an illustration, we show some estimation results of constant CQVF
of industrial category portfolio and its application to portfolio credit risk
analysis in the next section. The primitive thinning model of θSt = 1 (∀S ⊂
S∗) is the thinning model employed in Giesecke and Kim [5] and Yamanaka
et al. [15, 16].

4 Application: analyses of credit rating tran-

sition of Japanese firms with constant CQVF

In this section, we use some historical data on credit rating transition of
Japanese firms to estimate constant CQVF (see Example 1 of the previous
section) for several sub-portfolios5. Then, we detect the frequency of credit

5As we remarked in the previous section, the only allowable constant model is the
primitive model with θSt = 1 if the number of constituents in sub-portfolios can change in
time. However we try to estimate CQVF with the constant model even for such portfolios
consisting of variable constituents. The one reason why we employ the constant CQVF
model is that it is enough to learn whether the CQVF can be useful for improving the
accuracy of thinning. As other reasons, we can regard the constant CQVF as an approx-
imation of the time-varying CQVF if the number of constituents is less fluctuated, and
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event occurrence of each sector. Also, we calculate the number of downgrades
occurs in several portfolios and see the effect of the portfolio constituent
sectors ratio.

4.1 Estimation Procedure

We mention the estimation for the thinning model with covariate CQVF
(10).

Suppose that the economy-wide portfolio S∗ consists of M disjoint non-
empty sub-portfolios S1, · · · , SM .

The data for model estimation consists of pairs of when an event happens
and in which portfolio the event occurs.

Specifically, the data available at time t, denoted by Ht can be repre-
sented by the family of event times observed and in which sub-portfolio each
observed event occurs:

Ht = {
(
Tn, T 1 ∩ [0, t], · · · T M ∩ [0, t]

)
}Tn≤t.

Let us remember that T S is the set of stopping times at which credit
events occur in sub-portfolio S.

In general, because of the equality constraint (1), the CQVFs θm can
be freely given for only (M − 1) sub-portfolios and that of the last one is
determined by the equality constraint (1).

We suppose that θ1t , · · · , θM−1
t are modeled as the covariate CQVF model6

and the thinning for sub-portfolio SM is calculated via the equality con-
straint (1). Also we assume that the parameters to be estimated are Θ =
{(θm, am1 , · · · , amK)}m=1,··· ,M−1.

In ordet to estimate parameters Θ of the covariate CQVF model (10) for
sub-portfolio S1, · · · , SM−1, we employ a maximum likelihood method.

Since {Zm
Tn
}n≤Nt,m=1,··· ,M are independent given the data Ht and ZS

Tn
=

P (Tn ∈ T S | Tn ∈ T ∗,Θ) for any sub-portfolio S, the likelihood function is

L(Θ | Ht) =
M−1∏
m=1

∏
Tn≤t|Tn∈T m

Zm
Tn

×
∏

Tn≤t|Tn∈T M

(
1−

M−1∑
m=1

Zm
Tn

)
. (13)

we can expect to see the average of time-varying CQVF at least even if the number of
constituents is sharply fluctuated.

6We remark that the estimation can depend on which sub-portfolios are chosen for
constructing free (M − 1) CQVF models.
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Therefore the log-likelihood function of the thinning model can be given
by

logL(Θ | Ht) =
M−1∑
m=1

∑
Tn≤t|Tn∈T m

log
(
Zm

Tn

)
+

∑
Tn≤t|Tn∈T M

log

(
1−

M−1∑
m=1

Zm
Tn

)

=
M−1∑
m=1

∑
Tn≤t|Tn∈T m

{
log
(
Z̃m

Tn

)
+ log

(
θ
m
)
+
(
am1 Y

m
1,t + · · ·+ amKY

m
K,t

)}

+
∑

Tn≤t|Tn∈T M

log

(
1−

M−1∑
m=1

Z̃m
Tn
θ
m
ea

m
1 Y m

1,t+···+amKY m
K,t

)
, (14)

where Z̃S
t for sub-portfolio S stands for the ratio of the constituents in sub-

portfolio S defined in (5).
As for the empirical study below, we use the much simpler constant CQVF

model for two partitions of the economy-wide portfolio with the log-likelihood
function (15)7.

Then we need to estimate only one parameter θ
S
of the one target sub-

portfolio S, so the log-likelihood function is given by

logL(θ
S | Ht) =

∑
Tn≤t|Tn∈T S

{
log Z̃S

Tn
+ log θ

S
}
+

∑
Tn≤t|Tn ̸∈T S

log
(
1− Z̃S

Tn
θ
S
)
.

(15)

4.2 Estimation of constant CQVFs

In this subsection, we use some historical data on credit rating transition
of Japanese firms to estimate the constant CQVF of the sub-portfolios that
partition the economy-wide portfolio. We presume that the economy-wide
portfolio is partitioned into five sub-portfolios according to the industrial sec-
tor defined as Tokyo Stock Exchange (TSE) 33 sector classification We give
the relations between the five sub-portfolios and TSE 33 sector classification
as seen in Table 1.

As the sample data of credit events, we use the historical records on
downgrade and upgrade from January 4, 2000 to December 30, 2010 of the
Japanese firms, which were announced by Rating and Investment Informa-
tion, Inc. (R&I)8. Thus we implicitly suppose that the economy-wide (EW)

7As we can see in Appendix A, the estimates obtained every sector with the simpler
two partition log-likelihood function (15) are not so different from those with the entire
log-likelihood function (14).

8Rating and Investment Information is one of the largest credit rating agency in Japan.
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Table 1: The relations between the five sub-portfolios and Tokyo Stock Ex-
change 33 sector classification.

5 sub-portfolios 33 Sector Classification
Cyclical Mining Textiles & Apparels

Pulp & Paper Chemicals
Oil & Coal Products Rubber Products
Glass & Ceramics Products Iron & Steel
Nonferrous Metals Metal Products
Marine Transportation Wholesale Trade

Defensive Fishery, Agriculture & Forestry Foods
Pharmaceutical Electric Power
Gas

High Technology Machinery Electric Appliances
Transportation Equipment Precision Instruments
Information & Communication

Financial Securities & Commodity Futures Banks
Life Insurance Non-life insurance
Other Financing Business

Domestic Construction Other Products
Land Transportation Air Transportation
Warehousing & Harbor Retail Trade
Real Estate Services
Transportation Services

11



portfolio S∗ is constituted by all the firms where R&I provided the credit rat-
ing each period. As such, each of the five partitioning sub-portfolios (“Cycli-
cal”, “Defensive”, “High Tech.”, “Financial”, and “Domestic”) consists of
the firms that have (had) some credit rating provided by R&I.

We use such records on downgrade and upgrade to estimate CQVFs of
downgrade and upgrade separately for each sub-sector with the simple ML
with the log-likelihood function (15). The estimation results are displayed in
Table 2.

As discussed in section 3, if the estimate satisfies the inequality θ
S
> 1

(resp. θ
S
< 1), the sub-portfolio S can be considered as relatively vulnerable

(resp. stable) in credit quality. “High” (resp. “Low”) in the column of

“Event Frequency” in Table 2 indicates that satisfied is not only θ
S
> 1 (resp.

θ
S
< 1) but also the absolute value of the difference between the estimate

and the null hypothsis θ
S
= 1 is larger than twice of the standard error given

in the parenthesis below the estimate (meaning about 5% significance level).
Table 2 indicates that “Defensive” is the lowest rating-change frequency

sector while “Financial” is the highest. In short, indeed the credit qualities
of “Financial” is likely to be more vulnerable than “Defensive” sub-portfolio.
In addition, Table 2 implies that downgrades in ‘Cyclical” and upgrades in
“Domestic” can be less frequent for the component proportion ratio to the
whole portfolio.

Next we calculate AIC for CQVF model as well as the primitive model

(θ
S
= 1) in Table 3.
From the principle that the model with smaller AIC should be selected,

Table 3 implies that the constant CQVF model rather than the primitive
model seems more appropriate for “Cyclical”, “Defensive” and “Financial”
in case of downgrades, while so does for “Defensive”, ‘Financial” and “Do-
mestic” in case of upgrades.

Moreover we examine the closeness between the monthly expected num-
ber implied by the model and the actual monthly observations of down-
grades/upgrades so as to compare the model prediction power between the
constant CQVF model and the primitive one.

For the purpose, we compute the conditional expectations of credit event
counts happened per month for each sector Si given the data available up to
the end of the current month as well as the event times in the next one month.
Specifically, if tm and tm+1 are respectively the end of the current month and
that of the next month, the conditional expectation of N i

tm+1
− N i

tm can be

12



Table 2: The estimates of the constant CQVF for the five sub-portfolios the
simple ML with the log-likelihood function (15). The values in parentheses
are the standard errors. “High” (resp. “Low”) stands for θ > 1 (resp. θ < 1)
with about 5% significance level.

Down-Grade Up-Grade
Sub-port. CQVF Event Frequency CQVF Event Frequency
Cyclical 0.780 Low 1.075 -

(0.069) (0.087)
Defensive 0.617 Low 0.638 Low

(0.097 ) (0.109)
High-tech 1.092 - 1.163 -

(0.080) (0.090)
Financial 1.354 High 1.336 High

(0.115) (0.117)
Domestic 1.083 - 0.733 Low

(0.069) (0.068)

Table 3: AIC of the constant CQVF model and the primitive model (θ
S
= 1)

for each sub-portfolio.

Down-grade Up-grade
Sector Primitive CQVF Primitive CQVF
Cyclical 535.92 529.01 520.73 521.96
Defensive 289.05 279.50 242.04 235.69
High-tech 629.94 630.58 540.55 539.06
Financial 560.20 551.17 513.70 506.13
Domestic 693.43 693.94 478.49 467.17
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achieved due to the argument in Section 2 by

E
[
N i

tm+1
−N i

tm | Htm , {Tn} ⊂ (tm, tm+1] ∩ T ∗]
=

∑
Tn∈(tm,tm+1]∩T ∗

E
[
Zi

Tn
| Htm

]
=

∑
Tn∈(tm,tm+1]∩T ∗

Z̃i
Tn

· θ̂i, (16)

where Z̃i
t is the ratio of the number of constituents in sub-portfolio Si to S∗

defined in (5), and θ̂
i
is the estimate of the constant CQVF θ

i
via the simple

ML with (15).
Table 4 (resp. Table 5) shows some basic statistics of the difference be-

tween the expected number (16) of monthly downgrades (resp. upgrades)
counts and the observation during January 2000 to December 2010 for each
of the five sub-portfolios.

In addition, Figure 1 displays the time series transition of the observa-
tions of monthly downgrades as well as the conditional expectations (16) of
monthly downgrade counts implied respectively by the CQVF model and the
primitive model for “Cyclical” sub-portfolio.

Both tables and the figure indicate that the estimation by CQVF model
is closer on average to the observations than primitive model during most of
the periods.

However, we can also realize that the primitive model leads to better
estimation of monthly rating changes than CQVF model when the events
happen much more than usual, for example, around 2002 as seen in Figure
1. The consequence implies that some time-varying CQVF models would be
more adequate for dynamic random thinning during a long period than the
constant CQVF model.

4.3 Simulation analysis on portfolio credit risk in con-
sideration of CQVF

In this subsection, we examine with some numerical simulation how much
the industrial sector constitution ratio in a portfolio influences the portfolio
downgrade risk.

Suppose that the economy-wide (EW) portfolio S∗ is constituted by 567
bond issuers, which R&I provided the ratings on January 4, 2011, and that
S∗ has the distribution over the five sub-portfolios as seen in Table 6. Then
we consider three hypothetical portfolios named portfolio A, B and C for
downgrade simulation analysis as below.

As presented in Table 6, the three hypothetical portfolios uniformly con-
sist of 200 bond issuers and are respectively specified as follows:
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Table 4: Some basic statistics on the difference between the expected number
(16) of monthly downgrades obtained from both CQVF and Primitive and
the monthly observation during January 2000 to December 2010 for each of
the five sub-portfolios.

Cyclical Defensive High-tech
Primitive CQVF Primitive CQVF Primitive CQVF

average 0.23 0.01 0.18 0.00 -0.09 0.00
min -4.33 -4.92 -5.76 -6.62 -3.16 -3.00
5%-percentile -1.31 -1.61 -0.89 -0.94 -1.86 -1.76
10%-percentile -0.78 -1.04 -0.54 -0.71 -1.34 -1.28
25%-percentile -0.08 -0.40 0.00 0.00 -0.42 -0.27
median 0.14 0.00 0.22 0.13 0.00 0.00
75%-percentile 0.69 0.53 0.47 0.29 0.37 0.49
90%-percentile 1.26 0.82 1.01 0.63 0.91 1.00
95%-percentile 2.00 1.45 1.17 0.72 1.28 1.47
max 4.02 2.91 2.66 1.64 2.97 3.43

Financial Domestic
Primitive CQVF Primitive CQVF

average -0.22 0.00 -0.10 0.00
min -8.06 -7.02 -4.46 -4.25
5%-percentile -2.65 -2.16 -1.88 -1.79
10%-percentile -1.42 -1.14 -1.40 -1.25
25%-percentile -0.35 -0.01 -0.65 -0.49
median 0.14 0.22 0.00 0.00
75%-percentile 0.42 0.58 0.52 0.56
90%-percentile 0.70 0.98 1.09 1.18
95%-percentile 0.90 1.31 1.64 1.81
max 1.65 2.24 3.25 3.77

15



Table 5: Some basic statistics on the difference between the expected number
(16) of monthly upgrades obtained from both CQVF and Primitive and the
monthly observation during January 2000 to December 2010 for each of the
five sub-portfolios.

Cyclical Defensive High-tech
Primitive CQVF Primitive CQVF Primitive CQVF

average -0.06 0.00 0.14 0.00 -0.13 0.00
min -4.86 -4.70 -1.29 -1.55 -2.97 -2.65
5%-percentile -1.66 -1.56 -0.80 -0.90 -1.88 -1.62
10%-percentile -1.04 -0.96 -0.65 -0.80 -1.34 -1.09
25%-percentile -0.40 -0.34 0.00 0.00 -0.56 -0.48
median 0.02 0.10 0.12 0.07 0.00 0.00
75%-percentile 0.44 0.50 0.42 0.26 0.45 0.53
90%-percentile 0.71 0.78 0.75 0.48 0.89 1.06
95%-percentile 1.26 1.39 1.06 0.67 1.25 1.50
max 2.29 2.46 1.39 0.88 2.28 2.65

Financial Domestic
Primitive CQVF Primitive CQVF

average -0.20 -0.01 0.26 0.00
min -7.96 -7.28 -2.18 -2.40
5%-percentile -2.60 -2.33 -1.26 -1.58
10%-percentile -1.58 -1.13 -0.89 -1.25
25%-percentile -0.54 -0.16 -0.17 -0.56
median 0.10 0.17 0.28 0.00
75%-percentile 0.30 0.48 0.61 0.41
90%-percentile 0.70 1.08 1.41 0.97
95%-percentile 1.04 1.45 1.86 1.33
max 2.71 3.63 3.40 2.49
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Figure 1: The time series transition of the observations of monthly down-
grades as well as the conditional expectations (16) of monthly downgrade
counts implied respectively by the CQVF model and the primitive model for
“Cyclical” sub-portfolio.
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• Port. A is over-weighted to “Cyclical” and “Defensive”, whose down-
grade CQVFs are relatively low.

• Port. B is almost equally distributed over the five sub-portfolios intro-
duced in the previous subsection.

• Port. C is over-weighted to “Financial” and “Domestic”, whose down-
grade CQVFs are relatively high.

Remark that we do not need to identify the firms’ names in each portfolio
for the simulation since we use only the CQVF of each sub-portfolio without
each firm’ property.

Table 6: The distributions over the five sub-portfolios of the economy-wide
(EW) portfolio S∗ as well as three hypothetical portfolios for downgrade
simulation analysis. There are 567 bond issuers which R&I provided the
rating on January 4, 2011.

Sector EW Port.A Port.B Port.C
Cyclical 122 122 43 0
Defensive 60 60 21 0
High-tech 124 0 44 92
Financial 108 0 38 108
Domestic 153 18 54 0
Total 567 200 200 200

Assume that we have to estimate a downgrade risk for each hypotheti-
cal portfolio from January 4, 2011 to December 30, 2011. Then the model
parameters are estimated with the historical data from January 4, 2000 to
December 30, 2010. We begin to specify and estimate the economy-wide
intensity model and then generate many scenarios of downgrades by random
thinning associated with the constant downgrade CQVFs.

We firstly specify the economy-wide intensity model as

λ∗
t = exp(α+ βYt), (17)

to estimate the parameters α and β, where Yt is some single covariate.
For a tentative illustration, we suppose that the covariate Yt stands for

the annual return at time t of TOPIX (TOkyo stock Price IndeX) 9.

9We calculate the realized annual return ỹt at time t as 250 business day return, that
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We employ the maximum-likelihood estimation with the samples observed
from January 4, 2000 to December 30, 2010 to obtain α̂ = 3.81 (0.04) and
β̂ = −2.13 (0.17), where the standard errors are the values in parentheses.

The estimation procedures of the intensity is explained in Appendix C.
We remark that the negative value of β̂ implies that downgrades are more

(resp. less) likely when TOPIX has fallen (resp. risen) from one year before.
It is consistent with naive intuition if seeing TOPIX as a proxy of the whole
economic condition.

The posterior downgrade intensity paths of the economy-wide portfolio
and the five sub-portfolios are presented in Figure 2. The path of the pos-
terior economy-wide portfolio downgrade intensity λ̂∗

t is drawn due to (17),

namely, λ̂∗
t = exp(α̂+ β̂ỹt), where ỹt is the realized annual TOPIX return at

time t. The downgrade intensity paths of the five sub-portfolios are obtained
by thinning ((3) and (6)) of the posterior economy-wide portfolio downgrade

intensity λ̂∗
t with the CQVF thinning model whose constant CQVF estimate

θ
i
is are shown in Table 15.
We generate 100,000 scenarios of downgrade events by Monte Carlo sim-

ulation on random thinning associated with the constant downgrade CQVF
for the five sub-portfolios estimated in the previous subsection. In order to
obtain samples of credit event times, we firstly obtained the intensity of each
sector by the thinning model (3) and (6). Then, we simulate event times with
each sector-based intensity: the event times of sector Si on k-th business day,

(tk = T k
0 <)T k

1 < T k
2 < . . . (< tk+1), are obtained as T k

j+1 − T k
j = − logUk

λi
tk

,

where {Uk} are a series of (0, 1)-uniform random variables. This procedures
are based on the simulation procedure of stationary Poisson process.

For the intensity simulation on the out-of-sample period, we use TOPIX
annual return on the out-of-sample period, from January 4, 2011 to December
30, 2011, to obtain the whole intensity λ̂∗

t on the period. Table 7 stands for
the expected downgrade counts for one year each portfolio that is obtained
by the simulation. Also, Figure 3 displays the distributions of simulated
downgrade counts for one year each portfolio.

Both Table 7 and Figure 3 show that downgrades can occur the most
frequently in Port.C among the three portfolios, while there are fewer down-

is, we obtain annual return of TOPIX by

St − St−250business days

St−250business days
, (18)

where St and St−250business days are the closing price of TOPIX at the date t and 250
business days before date t respectively.
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Figure 2: The posterior downgrade intensity paths of the economy-wide port-
folio and the five sub-portfolios. The economy-wide intensity path is obtained
by λ̂∗

t = exp(3.81− 2.13ỹt), where ỹt is the actual annual return at time t of
TOPIX. The intensity of each sector is obtained by the thinning model (3)
and (6) with the constant CQVF.

20



grades in Port.A. The consequence is quite natural as expected in advance.
On the other hand, as the primitive model is independent of portfolio

sector distribution, the simulated distributions of downgrade frequency are
almost the same over all the portfolios.

Table 7: Some statistics of the downgrade frequency distributions obtained
by Monte Carlo simulations with 100,000 trials. Figures correspond to the
number of downgrade events generated by the simulations.

Port A Port B Port C
CQVF Model Average 13.9 18.7 22.6

99-percentile 23 29 34
Max 32 40 44

Primitive Model Average 18.3 18.3 18.3
99%-percentile 29 29 29
Max 40 38 40

5 Concluding remarks

In this paper, we suggest introducing the notion of credit quality vulnerability
factor (CQVF) to thinning of the economy-wide credit event intensity in
the top-down approach in order to improve credit risk measurement of sub-
portfolios.

Although we just use a simple constant CQVF model to analyze some
sub-portfolios classified according to types of industry with the historical
data on credit rating changes of the Japanese firms, the estimation results
directly indicate which sub-factors are more (less) vulnerable for credit rating
changes by and large. Therefore we can conclude that thinning with some
CQVF is more useful to estimate the future frequency of credit rating changes
in sub-portfolios than primitive thinning with a naive composition rate of the
sub-portfolios in the whole. Moreover, through a simulation analysis of some
hypothetical portfolios, we can see the relation between the distribution of
CQVF associated with the portfolios and the portfolio credit risk.

For our further work, we will develop the top-down credit risk framework
with more sophisticated random thinning in accuracy and tractability for
practical use of risk management.
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Figure 3: Distributions of simulated downgrade counts in one year each
portfolio.

A Comparative analysis on estimation pro-

cedures

In section 4 we employ the maximum likelihood (ML) method with (15),
which respectively estimates the CQVF of each sub-portfolios, although it ap-
pears natural to simultaneously estimate the CQVFs of all the sub-portfolios
by ML with the log-likelihood (14).

Here we examine the difference of the estimates between the two meth-
ods. Remember the settings with the five sector sub-portfolios introduced in
section 4.

For the regular ML with the log-likelihood (14), we regard the domestic

sector S5 as the sub-portfolio whose CQVF θ̂
5
cannot be directly estimated.

In order to obtain θ̂
5
, we firstly have the time series given by

θ̂
5

Tn
=

1−
∑4

i=1 Z̃
i
Tn
θ̂
i

Z̃5
Tn

, Tn ∈ T ∗, (19)

where {θi}i=1,··· ,4 are the constant CQVF estimates for sub-portfolios S1, S2, S3
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and S4 obtained directly by ML with (14). Then we obtain the CQVF θ̂
5
of

the domestic sector S5 as the average in time of {θ̂5Tn
}n=1,··· ,Nt , namely,

θ̂
5
=

Nt∑
n=1

θ̂
5

Tn

Nt

. (20)

The estimation result is displayed in table 8. Table 8 implies that the
estimates by the simpler ML with (15) are not so far in terms of standard
errors from the regular ML with (14).

Hence we consider that we can use the simple two partition ML with (15)
for our empirical study.

Table 8: The ML Estimates of CQVF for the five sectors by the simpler
two-partition ML (Simple) with (15) as well as the regular ML estimation
(Regular) with (14) and (19)-(20). The values in parentheses are the standard
errors.

Down-Grade Up-Grade
Sector Simple Regular Simple Regular
Cyclical (Sec1) 0.780 0.792 1.075 1.085

(0.069) (0.062) (0.087 ) (0.068)
Defensive (Sec2) 0.617 0.624 0.638 0.647

(0.097) (0.092) (0.109) (0.099)
High-tech (Sec3) 1.092 1.092 1.163 1.163

(0.080 ) (0.069) (0.090) (0.069)
Financial (Sec4) 1.354 1.294 1.336 1.323

(0.115) (0.095) (0.117) (0.090)
Domestic (Sec5) 1.083 1.095 0.733 0.740

(0.069) - (0.068) -

B Normalization of thinning processes

If the partitioned sub-portfolios S1, · · · , SM of S∗ are simultaneously con-
sidered, the CQVF models should satisfy the condition (1) that the sum of
thinning processes is always one. Thus, we often consider the normalized
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thinning process specified by

Zi
t =

θitZ̃
i
t∑M

j=1 θ
j
t Z̃

j
t

= θ̃itZ̃
i
t , (21)

where we call θ̃it =
θit∑M

j=1 θ
j
t Z̃

j
t

“the normalized CQVF.” However section 4

does not particularly assume such a normalization of CQVF for simplicity.
Here we compare the estimation of CQVF with normalization with that

of unnormalized case appeared in section 4.
For the estimation of CQVF with normalization, we assume the pre-

CQVF θit is constant in (21), namely θit = θ
i
. Then we obtain the estimates

θ̂
i
of the pre-CQVF via ML estimation with log-likelihood function given by

logL(Θ | Ht) =
M∑

m=1

∑
Tn≤t|Tn∈T m

log
(
Zm

Tn

)
=

M∑
m=1

∑
Tn≤t|Tn∈T m

{
log
(
Z̃m

Tn

)
+ log

(
θ
m
)}

.

The estimates θ̂
i
of the pre-CQVF from the samples presented in section

4 are shown in Table 9.

Table 9: ML estimates of the pre-normalized CQVF θ̂
i
. The values in paren-

theses are standard errors.

Sector Down-Grade Up-Grade
Cyclical (Sec 1) 1.239 1.418

(0.135) (0.153)
Defensive (Sec 2) 0.988 0.842

(0.166) (0.154)
High-tech (Sec 3) 1.749 1.534

(0.171) (0.161)
Financial (Sec 4) 2.174 1.794

(0.232) (0.202)
Domestic (Sec 5) 1.734 0.966

(0.159) (0.112)
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After that, with the pre-normalized CQVF estimators, we calculate the
normalized CQVF estimators at each event time as follows:

̂̃θiTn
=

θ̂
i

Tn∑M
j=1 θ̂

j

Tn
Z̃j

Tn

, Tn ∈ T ∗.

In order to compare the normalized CQVF with the unnormalized shown

in section 4, we calculate the time-series average ̂̃θi of the normalized CQVF:

̂̃θi = Nt∑
n=1

̂̃θiTn

Nt

.

Table 10 shows the CQVF estimates of the average normalized CQVF as
well as the unnormalized constant CQVF estimates presented in section 4.

Table 10 naively indicates that average normalized CQVFs are not so
different from the unnormalized constant CQVFs in terms of standard errors.
This consequence implies that it is not serious for our empirical analysis to
ignore the normalization of CQVF．

Table 10: Estimated CQVFs for the five sectors. The values in parentheses
are standard errors.

Down-Grade Up-Grade
Sector Unnormalized Normalized Unnormalized Normalized
Cyclical (Sec 1) 0.780 0.774 1.075 1.075

(0.069) - (0.087 ) -
Defensive (Sec 2) 0.617 0.616 0.638 0.638

(0.097) - (0.109) -
High-tech (Sec 3) 1.092 1.092 1.163 1.162

(0.080 ) - (0.090) -
Financial (Sec 4) 1.354 1.358 1.336 1.359

(0.115) - (0.117) -
Domestic (Sec 5) 1.083 1.083 0.733 0.732

(0.069) - (0.068) -
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C Parameter estimation of the intensity pro-

cess

We apply the maximum likelihood method in order to obtain the parameters
of EW intensity model given by (17). We assume that 12:00 a.m. on January
4, 2000 is set as t = 0 and that the observed raw event dates {T̃n}n=1,...,N with
0 ≤ T̃1 ≤ T̃2 ≤ . . . ≤ T̃N(< H) are available for estimation. Also suppose
that each raw event date can be represented like T̃n = m∆t for some integer
m and ∆t = 0.004, which means 250 business days amount to a unit of time.

Now the log-likelihood function for α and β in (17) can be approximated
as follows.

N∑
n=1

log λ∗
T̃n− −

∫ H

0

λ∗
sds ≈ Nα + β

N∑
n=1

ỹT̃n
− eα∆t

M−1∑
m=0

eβỹm∆t ,

where, T̃0 = 0, H = M∆t for some integer M , and {ỹm∆t}m=0,1,...,M−1 are the
daily samples during the period [0, H) of the TOPIX annual return calculated
via (18).
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