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Abstract

In this research, we examine the types of bankruptcy risk dependence structures of Japanese
firms by using a multidimensional Hawkes process. For this purpose, we concentrate on a new
approach called the Hawkes graph (introduced by Embrechts and Kirchner [4]) to estimate the
intensity process of the multidimensional Hawkes process and assess whether the Hawkes graph
approach is applicable for examining bankruptcy risk dependence structures, using historical
data on firms’ bankruptcies in Japan. We find that the Hawkes graph approach can be used
to analyze such credit risk dependence compared with the maximum likelihood method for the
conventional Hawkes intensity specified by an exponentially decaying function.

Keywords: Hawkes process, Hawkes graph, bankruptcy risk dependence, bankruptcies in
Japan
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1 Introduction

This research examines the types of bankruptcy risk dependence structures of Japanese firms by
applying a multidimensional Hawkes process. We focus on a new approach called the Hawkes graph
(introduced by Embrechts and Kirchner [4]) to estimate the intensity process associated with the
multidimensional Hawkes process and assess whether the Hawkes graph approach is useful and
tractable for analyzing bankruptcy risk dependence, which is one of the most important issues in
the field of credit risk research.

A (multidimensional) Hawkes process, originally introduced by Hawkes [6], has often been used
for counting the cumulative number of several types of events that may have a certain dependence
structure, such as self-exciting effects (i.e., after an event of one type happens, another event of
the same type is more likely to happen than before) and/or mutually exciting effects (i.e., after an
event of one type happens, the next event of another type is more likely to happen than before).

Hawkes [6] suggests that the Hawkes process can be adopted to model the transmission mech-
anisms of infectious diseases among certain groups. For example, Ogata [10] describes an early
application of the Hawkes process for modeling the aftershock occurrence mechanism in seismology.

∗This research has been supported by JSPS KAKENHI grant numbers JP17K01248 and JP26330026. Also, we
would like to thank Editage (www.editage.jp) for English language editing.

†Graduate School of International Corporate Strategy, Hitotsubashi University, Japan. E-mail:
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However, modeling with the Hawkes process has recently become popular in finance, especially for
analyzing high-frequency market trading data (see the comprehensive survey of Bacry et al. [2].)
The first application of the Hawkes model to financial data was probably in the study by Chavez-
Demoulin et al. [3], who apply it to Value-at-Risk (VaR) estimation by viewing the occurrence of
excess loss over VaR in a market as the underlying event type of the Hawkes process.

Mathematically, a (multidimensional) Hawkes process is generally defined by a vector of count-
ing processes whose intensity process consists of the part dependent on past occurrences of the
underlying events as well as the term independent of the past events. Although the Hawkes pro-
cess seemingly has a simple structure, it has many interesting mathematical properties, which
have become more apparent in the various theoretical studies since Hawkes [6] and Ogata [9] in
the 1970s (see Bacry et al. [2]).

The main application of the multidimensional Hawkes process in the finance literature has
recently moved to modeling market order mechanisms in the order book to more profoundly un-
derstand the market microstructure, using a comparatively large sample of high-frequency market
trading data. A simple Hawkes process or an extension thereof has also been used to analyze
financial risk events that happen infrequently. For example, Errais et al. [5] apply a jump-affine
intensity process containing a term related to the Hawkes process to measure credit risk, specif-
ically default event contagion in a credit portfolio. Azizpour et al. [1] use the default intensity
model that contains a self-exciting part associated with a marked Hawkes process regarded as
the contagion channel to study the default clustering observed in a portfolio of U.S. corporate
bonds. In addition, Nakagawa [8] and Yamanaka et al. [11] regard credit rating changes by a
rating agency as the event and analyze how such rating changes for Japanese firms occur by using
the multidimensional Hawkes process.

The target event of this study is firms’ bankruptcy by industry type and firm size, which we
examine to assess the extent to which bankruptcy risk dependence among such groups should be
considered to manage portfolio credit risk. Specifically, we use data on Japanese firms’ bankrupt-
cies during 2003–2015 classified into four industry types and three firm sizes. Therefore, we
discuss the validity of applying the Hawkes graph approach to bankruptcies, which are much less
frequently observed than high-frequency trading actions. Indeed, even if the number of event
types can be arbitrarily increased, the sample size of each type may become too small to analyze
since the data are small by nature.

The Hawkes graph is a weighted directed graph representing the significant self-exciting and/or
mutually exciting properties among event types, which thus allows the estimated dependence struc-
ture to be easily understood through its clear and simple visualization. However, the essence of
the Hawkes graph approach is to present an algorithm to reduce the computational load when
estimating the intensity parameters, especially in high-dimensional cases. The computational load
in the Hawkes graph approach is reduced because the original “point process” data consisting of
the bankruptcy dates are transformed into “count time-series data” consisting of the number of
bankruptcies in each bin obtained by dividing the sample period into bins of some unit size (e.g.,
one week). That transformed bin-count data can be approximately supposed to follow the corre-
sponding vector-values integer-valued autoregressive (INAR) model. Thus, the intensities of the
multidimensional Hawkes process model are estimated by using a nonparametric estimation via
several (relatively large) matrix operations similar to the coefficient estimation of multiple regres-
sion analysis or the autoregressive model. The theoretical consideration of such a nonparametric
estimation for the multidimensional Hawkes process is given in Kirchner [7].

We speculate that such an estimation using transformed count time-series data is useful for
our bankruptcy data since only the date when a firm’s bankruptcy happens rather than the exact
time is used for the estimation, and thus more than one firm’s bankruptcies often seem to happen

2



coincidently.
For comparison purposes, we also apply the maximum likelihood estimation with bankruptcy

data to the conventional Hawkes process model whose intensity contains an exponentially decaying
parametric function popularly assumed in previous studies of self-exciting and mutually exciting
properties. The maximum likelihood estimation with numerical optimization for the parametric
Hawkes intensity has often been used in the literature, but its usage remains challenging, even in
lower-dimensional cases.

Moreover, we examine the effects of some of the tuning parameters necessary for the Hawkes
graph estimation and the sample period used since how to assume the value of the tuning param-
eters or which period of the data to use is important for ensuring an efficient estimation.

Through a series of estimations and considerations, we find that the Hawkes graph approach
is applicable since the estimation outputs are similar to those of the maximum likelihood method
for the Hawkes intensity specified by an exponentially decaying function. We also note that some
of the tuning parameters influence the result, suggesting that attention should be paid to their
assumptions.

2 Data

In this study, we use historical data on Japanese firms’ bankruptcies between January 1, 2003
and December 31, 2015 (4,748 days)1. The data used in this research were purchased from Tokyo
Shoko Research, Ltd, which was established in 1892 as the first credit reporting agency in Japan
and remains one of the largest credit reporting agencies in the country. Among these data, we
select only samples of bankrupt companies that satisfy the following conditions: total liabilities
at bankruptcy is at least one billion yen and the head office is in the Tokyo metropolitan area or
any of the three prefectures next to Tokyo, namely Chiba, Kanagawa, and Saitama.

We categorize the selected bankruptcy subsample by industry type and firm size as follows. For
the former, we divide the sample into the four industry types of manufacturing, distribution
and infrastructure (D&I hereafter), finance, and service, according to the industry code
given by Tokyo Shoko Research. Specifically, the manufacturing industry includes the agriculture,
forestry, and fisheries sector in addition to all manufacturing industries; D&I includes the ICT
sector, transportation industry, and wholesale trade and retail trade; and finance includes the
real estate industry as well as finance industries such as banks, brokerage firms, and insurance
companies.

For firm size, we divide the sample into small, medium, and large following the definitions
written into the Small and Medium-sized Enterprise Basic Act of Japan. Finally, we obtain 2,314
bankruptcies from 2003 to 2015. Table 1 shows the bankruptcy counts in our sample with respect
to industry type and firm size.

Figure 1 illustrates the daily counts of bankruptcies in our sample for each category. The left
panel shows the daily counts for each industry type and the right panel for each firm size.

We use a continuous-time model to map the dates of bankruptcies into continuous time with
a time unit of one year. January 1, 2003 is set as the initial point t = 0 and a one-day difference
is defined as 1/365. As such, the k-th dates after the initial point are mapped to k/365 in
continuous time. As a consequence, December 31, 2015, the end point of our sample, corresponds
to T := 13.00548 because of the existence of leap years.

1As examples of major bankruptcies, Lehman Brothers (bankrupted on September 16, 2008 with 3,431 billion
yen in total liabilities) and Japan Airlines (bankrupted on January 19, 2010 with 2,199 billion yen in total liabilities)
are included in our sample.
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Table 1: Total counts from 2003 to 2015 for industry type and firm size.

Small Medium Large Total

Manufacturing 149 471 102 722

D&I 214 293 208 715

Finance 323 83 65 471

Service 136 93 177 406

Total 822 940 552 2314
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Figure 1: The graphs show the daily counts of bankruptcies in our sample for each category. The
left panel shows the daily counts for each industry type and the right panel for each firm size.
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We often have to regard more than one bankruptcy at the same time point as tied observations
since only the bankruptcy dates are recorded in the original database. However, such tied data can
be inconvenient for estimating a simple Hawkes process, forcing us to make some adjustment. For
example, the number of bankruptcies observed at the same time point serve as a “mark variable”
of a marked Hawkes process.

3 Modeling the bankruptcy risk dependence structure with a
multidimensional Hawkes process

In this section, we firstly review the definition of a multidimensional Hawkes process. We then
present two ways of specifying a “kernel function” of the intensity process of the Hawkes process:
one is to assume that the kernel function is given by an exponential decay function, which is
popular in previous research using Hawkes processes, and the other is to assume that the kernel
is approximately piece-wise constant via the so-called Hawkes graph estimation introduced by
Embrechts and Kirchner [4].

3.1 Brief review of the Hawkes process

Denote by m ∈ N the total number of event types to be considered.
Let (Ω,F ,F = (Ft)t≥0,P) be a filtered complete probability space.
Hereafter, we define the symbol [n] by the set of natural numbers from one to n, that is,

[n] = {1, 2, · · · , n}.
We have F-adapted point processes, namely an increasing sequence of stopping times denoted

by {τ jk}k∈N for every event j ∈ [m]. More specifically, we can regard τ jk as an F-stopping time

when the k-th event of type i happens, and have 0(= τ j0 ) < τ j1 < τ j2 < · · · P-a.s. In addition,

we define a counting process {N j
t } associated with the point process {τ jk}k∈N for each j ∈ [m]

by N j
t :=

∑
k≥1

1{τjk≤t}. In general, counting processes are specified by their associated intensity

process that gives the instant conditional expectation of the underlying event counts. Let Nt =
(N1

t , . . . , N
m
t )⊤ be a vector of the m event counting processes.

Definition (Multidimensional Hawkes process). A vector Nt of the m-dimensional counting pro-
cesses is an m-dimensional Hawkes process if for any j ∈ [m] the intensity process {λj

t} associated
with N j

t is given by

λj
t = µj +

m∑
i=1

∫ t

−∞
hi→j(t− s)dN i

s, (1)

where {µj}j∈[m] are nonnegative constants and {hi→j(u)}(i,j)∈[m]2 are nonnegative deterministic
integrable functions with hi→j(u) ≡ 0 for u < 0 for any (i, j) ∈ [m]2.

We remark that µj can be seen as an exogenous intensity of event type j because of some
idiosyncratic sources of the type and that the functions hi→j(t− s) are called “kernel functions,”
which stand for the size of the remaining impact at time t of the type i event occurrence at time
s on the type j intensity. In other words, hj→j implies the self-exciting characteristics of the type
j event and hi→j (i ̸= j) implies the mutually exciting characteristics of the type i event onto the
type j event.

To analyze the bankruptcy risk dependence structures among our sample of Japanese firms,
we test the following two types of kernel functions and estimation methods:

5



1. For (i, j) ∈ [m]2, assume an exponential decay kernel function, that is, hi→j(u) = ξi→je−κju,
where ξi→j ≥ 0 and κj > 0. Estimate the unknown parameters by using the maximum
likelihood estimation. We call this the “exponential decay kernel case.”

2. Nonparametric estimation based on Embrechts and Kirchner [4] and Kirchner [7] is applied to
any kernel function hi→j(u). The kernel functions are indeed supposed to be approximately
piece-wise constant functions. We call this the “Hawkes graph case.”

We see the exponential decay kernel case more precisely in the next subsection, while the
Hawkes graph case is discussed in the section thereafter.

3.2 Exponential decay kernel case

In this section, we explain how to specify and estimate the intensity process {λj
t} by using an

exponential decay kernel function. It is first necessary to explain how we handle our sample
containing many simultaneous bankruptcy events.

From our data, we can suppose there are samples for each event type of pairs consisting of an
event occurrence time and the number of simultaneous events such as (τ̃ j , η̃j) := {(τ̃ jℓ , η̃

j
ℓ )}ℓ=1,...,Ñj

T
,

where τ̃ jℓ is the time when the ℓ-th bankruptcy happened after t = 0 and η̃jℓ stands for the number

of simultaneous bankrupt firms observed at time τ̃ jℓ .

Then, we define another (Ft)-adapted pure jump process {Lj
t} by Lj

t :=

Nj
t∑

k=1

ηjk, which can

be seen as a marked Hawkes process whose mark variable is given by the counts {ηjk}k=1,...,Nj
t
of

simultaneous bankrupt firms. In short, the process {Lj
t} means the cumulative number of type j

events happened up to time t.
Hence, we presume that the intensity process {λj

t} of the process {N j
t } is specified by using

an exponential decay kernel function hi→j(u) = ξi→je−κju, where ξi→j ≥ 0, κj > 0 as follows:

λj
t = µj +

m∑
i=1

ξi→j

∫ t

0
e−κj(t−s)dLi

s. (2)

It follows that the maximum likelihood estimation of the parameter set θj := (µj , κj , {ξi→j}i∈[m])
for the intensity of each type j ∈ [m] aims to maximize the log-likelihood function logL

(
θj | (τ̃ j , η̃j)

)
,

equivalently ∫ T

0
log(λ̃j,θj

s− )dL̃j
s −

∫ T

0
λ̃j,θj

s ds.

Under the exponential decay kernel function, it follows that the maximum likelihood estimation
can be reduced to a numerical maximization with respect to the parameter set θj of the following
objective function:

Ñj
T∑

k=1

log{µj +

m∑
i=1

ξi→j
∑
τ̃ iℓ<τ̃jk

η̃iℓe
−κj(τ̃ jk−τ̃ iℓ)} − µjT − 1

κj

m∑
i=1

ξi→j

Ñ i
T∑

k=1

η̃ik(1− e−κj(T−τ̃ ik)). (3)
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4 Hawkes graph case

In this section, we review the Hawkes graph introduced by Embrechts and Kirchner [4]. Originally,
the Hawkes graph approach was proposed to analyze high-frequency trading data categorized into
dozens of event types. In this sense, it may be unsuitable for modern credit risk research since
credit events such as bankruptcy are less frequent than trading in some financial markets. Indeed,
we consider at most four event types. In addition, the estimation is at best a rough approximation,
although it is tractable since the estimation problem is reduced to a combination of several linear
algebra computations.

However, the estimation of kernel functions for the Hawkes graph approach is founded on
the idea of changing the viewpoint of data from bankruptcy times to the counts of bankruptcies
observed during a unit time period. Therefore, applying such an idea to data that can contain
several events at the same time such as our sample data is relevant. In addition, it must be suffi-
cient to tentatively see the extent of self-exciting and/or mutually exciting among the underlying
event types, even if the estimates of the kernel functions are relatively inaccurate.

A Hawkes graph is defined in Embrechts and Kirchner [4] as a weighted oriented graph whose
vertices correspond to event type and whose edges correspond to pairs of event types between
which there may be a significant self-exciting or a mutually exciting relation via the estimation
explained later. In addition, the edges are weighted by the extent of self- or mutually exciting
relations in terms of the time integral of some estimated kernel function in the intensities of
the underlying Hawkes process. Before creating the Hawkes graph, a Hawkes skeleton is roughly
estimated as a nonweighted oriented graph containing edges that may have significant self-exciting
or mutually exciting relations.

The most important procedure for creating a Hawkes skeleton is to numerically obtain a
relatively huge matrix called the “Hawkes estimator” whose components are given by the non-
parametric estimates of the piece-wise constant kernel functions in the intensities of the underlying
Hawkes process in some periods for any event type. For this purpose, we need to transform the
historical data on the dates when the bankruptcies were recorded into some nonnegative integer-
valued bin-count sequences of bankruptcies per unit time period given by a tuning parameter.

In summary, the Hawkes graph can be obtained by these three steps: the calculation of the
Hawkes estimator, the estimation of the Hawkes skeleton, and the estimation of the Hawkes graph.

4.1 Hawkes estimator

This subsection presents how to obtain the Hawkes estimator according to Embrechts and Kirch-
ner [4] (see Kirchner [7] for more theoretical details).

As seen in the previous subsection, we can assume that there are samples for each event
type (τ̃ j , η̃j) := {(τ̃ jℓ , η̃

j
ℓ )}ℓ=1,...,Ñj

T
of pairs consisting of bankruptcy time and the number of

simultaneous bankruptcies at that time.
To obtain the Hawkes estimator, we transform this sample into the following nonnegative

integer-valued bin-count sequences of bankruptcies per unit time. Let ∆ > 0 be the length of a
(sufficiently small) unit period for our analyses. For each k ∈ [n] (where n := ⌊T/∆⌋), denote by

X
(j,∆)
k the number of bankrupt firms in event type j observed during the unit period ((k−1)∆, k∆].

We then define an m-dimensional vector as X
(∆)
k = (X

(1,∆)
k , X

(2,∆)
k , · · · , X(m,∆)

k )⊤.
If we fix some p ∈ N, a tuning parameter viewed as the duration in ∆ of self- or mutually

exciting effects, and assume that {X(j,∆)
k } (approximately) follows a so-called integer-valued p-

lagged autoregression (INAR(p)) model, we can see that the m-dimensional vector X
(∆)
k satisfies
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the following system of equations:

u ∈ {p+ 1, · · · , n} X(∆)
u =

p∑
k=1



m∑
j=1

X
(1,∆)
u−k∑
ℓ=1

ξ
(α1,j

k )

ℓ

...

m∑
j=1

X
(m,∆)
u−k∑
ℓ=1

ξ
(αm,j

k )

ℓ


+ εu,

where an m-dimensional vector α0 := (α1
0, . . . , α

m
0 )⊤ and a matrix αk := (αi,j

k )1≤i,j≤m ∈ Rm×m
≥0

are the parameters to be estimated, ξ
(α)
k is a random variable following a Poisson distribution

Po(α) with mean α, εu is an m-dimensional random vector that is component-wise i.i.d., and
εju ∼ Po(αj

0) for each j ∈ [m].

Moreover, it follows from Proposition 3.1 and Corollary 3.2 in Kirchner [7] that {X(∆)
k } solves

the following VaR-type equation: for any k = p+ 1, . . . , n,

X
(∆)
k = α0 +

p∑
ℓ=1

αℓX
(∆)
k−ℓ + εk.

Let Ĥ(∆,p) :=
(
Ĥ⊤

1 · · · Ĥ⊤
p µ̂

)⊤
∈ R(mp+1)×m be a matrix consisting of the nonparamet-

ric estimators of the kernel function {hi→j(k∆)(i,j)∈[m]2,k=1,...,p} in (1), which we call a Hawkes

estimator, where for k ∈ [p] set Ĥk :=
(
ĥi→j(k∆)

)
(i,j)∈[m]2

∈ Rm×m.

Between the parameters α0, (αk)k=1,...,p of the above INAR(p) model and the parameters
(µj , Ĥ(∆,p)) in the intensity process (1) of the underlying Hawkes process, the following approxi-
mate relations hold:

αj
0 ≈ µj∆ (j ∈ [m]), αi,j

k ≈ hi→j(k∆)∆ ((i, j) ∈ [m]2, k ∈ [n]).

As explained in Kirchner [7], the above approximation argument is justified in the following

way. In general, the process defined by N j
t −
∫ t

0
λj
sds becomes a martingale, and thus we naturally

obtain the next expression:

X
(j,∆)
k := N j

k∆ −N j
(k−1)∆ =

∫ k∆

(k−1)∆
λj
sds+Difference in time of some martingale.

From the conditional expectation of X
(j,∆)
k with respect to the history X

(∆)
k−1,X

(∆)
k−2, . . ., it follows

E
[
X

(j,∆)
k | X(∆)

k−1,X
(∆)
k−2, . . .

]
=

∫ k∆

(k−1)∆
E
[
λj
t | X

(∆)
k−1,X

(∆)
k−2, . . .

]
dt.

Therefore, the intensity process λj
t given by (1) can be approximated by the following steps, with a

(sufficiently small) ∆ > 0 and a (sufficiently small) p ∈ N, as follows. For k = p+1, . . . , n, we have
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E
[
X

(j,∆)
k | X(∆)

k−1,X
(∆)
k−2, . . .

]
=

∫ k∆

(k−1)∆

E
[
λj
t | X

(∆)
k−1,X

(∆)
k−2, . . .

]
dt

=

∫ k∆

(k−1)∆

E

[
µj +

m∑
i=1

∫ t

−∞
hi→j(t− s)dN i

s | X(∆)
k−1,X

(∆)
k−2, . . .

]
dt

≈∆ · µj +
m∑
i=1

∫ k∆

(k−1)∆

E

[∫ (k−1)∆

−∞
hi→j(t− s)dN i

s | X(∆)
k−1,X

(∆)
k−2, . . .

]
dt

(Trancation of the interval of dN i
s-integration by (k − 1)∆)

≈∆ · µj +∆

m∑
i=1

∫ (k−1)∆

−∞
hi→j(k∆− s)E

[
dN i

s | X(∆)
k−1,X

(∆)
k−2, . . .

]
(Discrete approximation of the time-integral)

≈∆ · µj +∆

m∑
i=1

∫ (k−1)∆

(k−p−1)∆

hi→j(k∆− s)dN i
s (Cutting off the duration of one past event)

≈∆ · µj +∆
m∑
i=1

p∑
ℓ=1

∫ (k−ℓ)∆

(k−ℓ−1)∆

hi→j(ℓ∆)dN i
s (Assuming the kernel is piecewise constant)

=∆ · µj +∆
m∑
i=1

p∑
ℓ=1

hi→j(ℓ∆)
(
N i

(k−ℓ)∆ −N i
(k−ℓ−1)∆

)
= ∆

(
µj +

m∑
i=1

p∑
ℓ=1

hi→j(ℓ∆)X
(i,∆)
k−ℓ

)
.

The parameters α0 and (αi,j
k )(i,j)∈[m]2,k∈[p] are estimated as the solution of the system of

equations obtained from the INAR(p) model via the conditional least-squares estimation method
(i.e., a simple linear algebra computation).

As a result, we can obtain the Hawkes estimator Ĥ(∆,p) specified by

Ĥ(∆,p) =
1

∆

(
Z⊤Z

)−1
Z⊤Y , (4)

where

Y := (X
(∆)
p+1,X

(∆)
p+2, · · · ,X

(∆)
n )⊤ ∈ N(n−p)×m, (5)

Z :=


(X

(∆)
p )⊤ (X

(∆)
p−1)

⊤ · · · (X
(∆)
1 )⊤ 1

(X
(∆)
p+1)

⊤ (X
(∆)
p )⊤ · · · (X

(∆)
2 )⊤ 1

...
...

. . .
...

...

(X
(∆)
n−1)

⊤ (X
(∆)
n−2)

⊤ · · · (X
(∆)
n−p)

⊤ 1

 ∈ N(n−p)×(mp+1). (6)

In addition, to achieve the estimation error, we need to obtain the covariance matrix (σ̂2
i,j) of

the Hawkes estimator, defined as follows:

σ̂2
i,j :=

1

∆2

((
Z⊤Z

)−1
⊗ 1m×m

)
W

((
Z⊤Z

)−1
⊗ 1m×m

)
∈ Rm(mp+1)×m(mp+1),

where W :=
∑n

k=p+1wkw
⊤
k ∈ Rm(mp+1)×m(mp+1) and

wk :=

(((
X

(∆)
k−1

)⊤
,
(
X

(∆)
k−2

)⊤
, · · · ,

(
X

(∆)
k−p

)⊤
, 1

)⊤
⊗ 1m×m

)

·

(
X∆

k −∆µ̂−
p∑

ℓ=1

∆Ĥ⊤
l X

(∆)
k−l

)
∈ Rm(mp+1)×1,
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where ⊗ is the Kronecker product of the matrices.
For the covariance matrix (σ̂2

i,j), Embrechts and Kirchner [4] show a tractable estimation

method of (σ̂2
i,j). See the next subsection for the specific algorithm of the covariance matrix

estimation.

4.2 Hawkes skeleton

Fix a tuning parameter ∆skel > 0. Let Ĥ(∆skel ,p) be the Hawkes estimator obtained for ∆ = ∆skel

in (4).
To estimate the Hawkes skeleton, it is essential to obtain both the estimator âi,j of the time

integral of the kernel function ai,j :=
∫∞
0 hi→j(t)dt and the squared standard error σ̂2

i,j . The
estimator âi,j corresponds to the “edge weight” in the Hawkes graph.

Theoretically, these can be achieved with the Hawkes estimator Ĥ(∆skel ,p) and the estimated

covariance matrix Ŝ2 of the Hawkes estimator as follows:

(âi,j)(i,j)∈[m]2 = ∆skelBĤ(∆skel ,p), (σ̂2
i,j)(i,j)∈[m]2 = ∆2

skelE
⊤
(i−1)m+jŜ

2E(i−1)m+j , (7)

where B := (b1, b2, · · · , bm)⊤, and for any j ∈ [m], bj is an (mp+1)-dimensional vector with zero
components other than the one in the ((k−1)m+j) components for k ∈ [p], while E(i−1)m+j is an
(m2p +m)-dimensional vector with zero components other than the one in the ((k − 1)m2+(i −
1)m+ j) components for k ∈ [p].

The definition of a Hawkes skeleton can now be given as follows.

Definition (Hawkes skeleton). The Hawkes skeleton associated with the m-dimensional Hawkes
process Nt with the intensity process given in (1) is defined by the oriented graph GS := (VS , ES)
such that the set of vertices VS := [m] and the set of edges ES :=

{
(i, j) ∈ [m]2 | ai,j > 0

}
.

We note that the set of edges of the Hawkes skeleton is actually estimated as
ÊS =

{
(i, j) ∈ [m]2 | âi,j > σ̂i,jz

−1
1−αskel

}
, where z−1

1−αskel
is the tuning parameter determining the

confidence interval, given by the quantile at (1−αskel )×100% of the standard normal distribution
for αskel ∈ (0, 0.5).

In other words, the confidence interval (âi,j − σ̂i,jz
−1
1−αskel

, âi,j + σ̂i,jz
−1
1−αskel

) represents the two-
sided confidence interval (1− 2αskel )× 100%. For example, when αskel = 0.05, the 90% two-sided
confidence interval is given by (âi,j − σ̂i,jz

−1
0.95, âi,j + σ̂i,jz

−1
0.95).

Appendix A presents the detailed algorithm for creating the Hawkes skeleton.

4.3 Hawkes graph

In the final step, the Hawkes graph can be created by more strictly re-estimating from the Hawkes
skeleton GS = (VS , ES) obtained in the previous subsection and by giving weights on the edges.

Definition (Hawkes graph). A Hawkes graph is a weighted oriented graph G := (V, E) that consists
of

V := {(j;µj) | j ∈ VS , µj is the type j’s exogenous intensity.},

E := {(i, j; ai,j) | (i, j) ∈ ES , ai,j =

∫ ∞

0
hi→j(t)dt is the time-integral of the kernel function

expressing the contagion effect of type i on type j.}.
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Embrechts and Kirchner [4] suggest the following procedure for obtaining the Hawkes graph,
which is not estimated directly from the obtained Hawkes graph. First, define a “parent” set
PA(j) := {i|(i, j) ∈ ES} for an “ancestor” j ∈ [m], where ES is the edge set of the Hawkes
skeleton estimated before. Let mj := |PA(j)| be the number of elements in PA(j). Next, fix
a positive constant ∆graph > 0 such that ∆graph ≪ ∆skel . Thus, we need the Hawkes estimator
again for the new fixed time unit ∆graph . (By abuse of notation, we use the same symbols such
as n for ∆graph as those for ∆skel hereafter, although they may be different from those for ∆skel .)

Under the above notation, we specify the estimated Hawkes graph Ĝ = (V̂, Ê) by the weighted
vertex set V̂ := {(j; µ̂j) | j ∈ [m]}（µ̂j is estimated as the type j’s exogenous constant intensity.）
and the weighted edge set

Ê :=
∪

j∈[m]

{
(iℓ, j; âi,j) | {i1, i2, · · · , imj} = P̂A(j), âiℓ,j = b⊤ℓ,jĤ

(∆graph ,p)
j

}
,

where bℓ,j is an (mjp + 1)-dimensional vector with one for only the ((k − 1)mj + ℓ) components
（k ∈ [p]）and zero for all the others.

Note that the weight on the edge (i, j) of the Hawkes graph is finally given by the confidence
interval [âiℓ,j ± σ̂iℓ,jz

−1
1−αgraph

) for the tuning parameter αgraph ∈ (0, 0.5), while the weight on the

vertex j is given by the confidence interval [µ̂j ± σ̂jz
−1
1−αgraph

) for the same αgraph .
Appendix A shows how to calculate the standard errors σ̂iℓ,j and σ̂j and the other detailed

algorithm for creating the Hawkes graph.

4.4 Value of the tuning parameters for the Hawkes graph estimation

As seen in the previous subsections, we have to choose the value of the five tuning parameters
(p,∆skel ,∆graph , αskel , αgraph) to estimate the Hawkes graph.

The basic setting of the tuning parameters is as follows. First, the tuning parameter p con-
trolling the duration of one bankruptcy effect is selected by the AIC minimization suggested by
Kirchner [7]. Specifically, the AIC for some p is given, under some fixed ∆0 and p0, by

AIC∆0(p) := log
(
det Σ̂(∆0)(p)

)
+

2pm2

n0 − p
, n0 = ⌊T/∆0⌋, p ∈ {1, . . . , p0},

where Uk is a white noise vector of INAR(p) given as a by-product of the Hawkes skeleton
estimation (see Appendix A), and Σ̂(∆0)(p) is defined by

Σ̂(∆0)(p) :=
1

n0 − p

n0∑
k=p+1

UkU
T
k .

For our bankruptcy sample presented in Section 2, we obtain p = 4 for the categorization of
industry types and p = 2 for firm sizes under ∆0 = 21/375, p0 = 8.

Second, the unit time intervals determining the bin size for estimating the skeleton and graph
are supposed to be ∆skel = 21/365 and ∆graph = 7/365, respectively. In short, three weeks in
calendar time is used to estimate the Hawkes skeleton, while one week is used for the Hawkes
graph. Because our sample contains relatively more bankruptcies on Fridays as well as relatively
few on Saturdays and Sundays, setting the least time unit for the bin size as one week seems
rational2.

2We tried estimations by supposing the minimum time unit ∆graph = 1/365. The results were almost the same
as those for our choice ∆graph = 7/365.
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Finally, the remaining tuning parameters (αskel , αgraph) are supposed to be 0.05 according to
the example in Embrechts and Kirchner [4], namely the edges (i, j) in the Hawkes skeleton and
graph are significantly selected if the 90% confidence interval of the weight âi,j never contains a
zero.

5 Results

This section illustrates and visualizes the estimated results of the multidimensional Hawkes process
for the exponential decay kernel case and Hawkes graph case, with two categorizations (four
industries and three firm sizes) for firms’ bankruptcies in the Tokyo metropolitan area and the
three large prefectures next to Tokyo in 2003–2015.

5.1 Maximum likelihood estimation for the exponential decay kernel case

Tables 2 and 3 display the maximum likelihood estimates of the parameters in the exponential
decay kernel function (2) for the four industry types and three firm sizes, respectively. In the
numerical maximization of the objective function (3) using the optim function of R, we examine
the influence of the initial values on the estimates by varying the initial values3.

Table 2 shows that for the four industry types, the self-exciting property of finance (ξ3→3)
and the mutually exciting property from both manufacturing and D&I to finance (ξ1→2, ξ1→3) are
estimated with 5% significance. With 10% significance, the self-exciting property of manufactur-
ing (ξ1→1) and the mutually exciting properties from D&I to service as well as from finance to
manufacturing (ξ2→4, ξ3→1) are found. In addition, the exogenous intensities (µj for j = 1, 2, 4)
other than finance are estimated with 10% significance.

This result implies that the bankruptcies in the finance industry are only caused by those in
manufacturing, suggesting that the self- and/or mutually exciting properties in manufacturing
and finance may cause chain bankruptcies in both industries.

On the contrary, the result for the three firm sizes (see Table 3) indicates that the self-exciting
property of medium and large firms (ξ2→2, ξ3→3) and the mutually exciting property from medium
to large firms (ξ2→3) are estimated with 5% significance. With 10% significance, the self-exciting
property of small firms (ξ1→1) and the mutually exciting property from large to medium firms
(ξ3→2) are also found.

This result suggests that bankruptcies in both medium and large firms are unaffected by those
in small firms, while they are strongly affected by those in medium and large firms owing to those
self- and/or mutually exciting properties.

Figure 2 illustrates the results given in the tables above in weighted oriented graph form,
allowing us to compare them with the results of the Hawkes graph cases in the next subsection.
The weight of edge (i, j) for the exponential decay kernel case is given by ξiℓ,j/κ

j with 10%
significance ξiℓ,j since the weight for the Hawkes graph case is specified by the estimate âi,j of the

time integral of the kernel function ai,j :=

∫ ∞

0
hi→j(t)dt and is equal to ξiℓ→j/κiℓ for the kernel

function hi→j(t) = ξi→je−κjt.

3We tried the initial value set {0, 0.3, 0.5} for ξi→j and {1, 3, 5, 10} for µja and κj (12 initial value sets overall).
As a consequence, the maximizers among the maximum likelihood estimates of the 12 initial value sets were selected
as the final maximum likelihood estimates.
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Table 2: Maximum likelihood estimates of the exponential decay kernel functions of the four
industry types. Manufacturing corresponds to j = 1, D&I to j = 2, finance to j = 3, and service
to j = 4. The figures in parentheses show the standard errors calculated from the estimated
Hessian matrix. The light gray cells indicate 10% significance and the gray cells 5% significance.

j ξ1→j ξ2→j ξ3→j ξ4→j µj κj

Manufacturing (1) 1.62 (0.93) 1.67 (1.14) 1.96 (1.12) 0.00 (1.21) 15.88 (4.56) 8.07 (1.96)
D&I (2) 1.65 (0.62) 0.00 (1.17) 0.07 (0.70) 0.09 (0.72) 17.97 (5.14) 3.35 (1.87)
Finance (3) 1.48 (0.66) 0.00 (0.93) 1.71 (0.82) 0.00 (0.80) 4.94 (3.10) 5.32 (1.82)
Service (4) 0.00 (1.02) 2.00 (1.14) 0.00 (0.80) 0.48 (0.99) 13.98 (4.55) 8.67 (7.30)

Table 3: Maximum likelihood estimates of the exponential decay kernel functions of the three
firm sizes. Small corresponds to j = 1, medium to j = 2, and large to j = 3. The figures in
parentheses show the standard errors calculated from the estimated Hessian matrix. The light
gray cells indicate 10% significance and the gray cells 5% significance.

j ξ1→j ξ2→j ξ3→j µj κj

Small (1) 1.18 (0.71) 0.32 (0.63) 1.33 (0.84) 28.64 (5.97) 6.12 (2.09)
Medium (2) 0.00 (0.69) 2.00 (0.83) 1.40 (0.82) 21.04 (5.83) 5.47 (1.59)
Large (3) 0.00 (0.79) 1.66 (0.64) 1.87 (0.94) 7.89 (4.44) 6.95 (2.43)

Figure 2: The graph representing the estimates of the exponential decay kernel functions of the
four industry types (left) and three firm sizes (right). Only the estimates of ξ̂i,j and µ̂j significant

at the 10% level are displayed. The figures associated with the oriented edge stand for ξ̂iℓ,j/κ̂
j .

The figures in the ellipse show only the estimates of exogenous intensity µ̂j significant at the 10%
level.

5.2 Hawkes graph estimation

Here, we show the estimation results for the Hawkes graph case. As discussed in Section 4.4, we as-
sume p = 4 for the four industry types and p = 2 for three firm sizes, while (∆skel ,∆graph , αskel , αgraph) =
(21/365, 7/365, 0.05, 0.05) for both.

Figure 3 displays the weighted oriented graph estimated under the above assumptions via the
method described in the previous section. Each interval associated with the underlying oriented
edge stands for the two-sided 90% confidence interval of âi,j explained in Section 4.3, under
the assumption αgraph = 0.05. Similarly, each interval in the ellipse shows only the estimates of
exogenous intensity µ̂j significant at the 10% level.

All the edges selected in the Hawkes skeleton estimation are shown in the final Hawkes graph,
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Figure 3: The Hawkes graphs estimated for the four industry types (left) and three firm sizes
(right). For the tuning parameter, p = 4 for the four industry types and p = 2 for the three firm
sizes are assumed, and the others (∆skel = 21/365,∆graph = 7/365, αskel = αgraph = 0.05) are
common. The interval associated with the underlying oriented edge stands for the two-sided 90%
confidence interval of âi,j , while the interval in the ellipse shows only the estimates of exogenous
intensity µ̂j significant at the 10% level.

implying that the Hawkes skeleton estimation step can be skipped for such an analysis with few
event types.

The graph of the four industry types (left of Figure 3) shows that the self-exciting properties
of manufacturing and finance as well as the mutually exciting properties from manufacturing to
D&I and finance and from finance to manufacturing are similar to in the exponential decay kernel
case. In contrast to the exponential decay kernel case, however, we see the weak mutually exciting
property from D&I to manufacturing and the vanishing of the mutually exciting property from
D&I to service. The exogenous intensity for finance is also shown.

On the contrary, the graph of the three firm sizes (right of Figure 3) shows the weak mutually
exciting property from medium to small firms in addition to similar relations estimated in the
exponential decay kernel case.

The similarity of the estimation results for the exponential decay kernel and Hawkes graph
cases with our data implies that the nonparametric kernel estimation used in the latter case is
sufficiently tractable since the estimated Hawkes graphs are similar to the graphs achieved by
using the maximum likelihood estimation for the former case, even though the Hawkes graph
estimation is a rough approximation. From another viewpoint, the nonparametric Hawkes graph
case may be more appropriate for quantifying the self- and/or mutually exciting properties of some
classification of firms’ bankruptcy than the exponential decay kernel case since the exciting effects
do not always follow an exponential decay function over time. In this sense, the Hawkes graph
case may imply more realistic self- and/or mutually exciting properties than the exponential decay
kernel case. As mentioned by Embrechts and Kirchner [4], the estimated Hawkes graph may thus
be a more suitable parametric function than the exponential decay function in some situations.

5.3 Comparison of posterior intensity paths

Next, we compare the daily posterior intensity paths that can be plotted for both cases. For the
exponential decay kernel case, we can plot the posterior path of the intensity process {λj

t} with
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Figure 4: The daily posterior paths of estimated intensity for both cases. The paths for the four
industry types (left) and three firm sizes (right) are displayed. The paths in the Hawkes graph
case are given by a spline interpolation for easier drawing.

the significant parameters and the samples of bankruptcy dates by using the following formula:

λ̂j
k∆graph

= µ̂j +

m∑
i=1

ξ̂i→j
∑

τ̃ iℓ<k∆graph

η̃iℓe
−κ̂j(k∆graph−τ̃ iℓ),

where τ̃ jℓ is the time when the ℓ-th bankruptcy happened in time after t = 0 and η̃jℓ stands for the

number of simultaneous bankrupt firms observed at time τ̃ jℓ .
On the contrary, the posterior intensity paths of the Hawkes graph case are represented by

using the values of the Hawkes estimator corresponding to the kernel estimates at the discrete

times h∆graph (1 ≤ h ≤ p) with the bin size data {X(j,∆)
k }k=1,...,n. Specifically, for k = p+1, . . . , n,

we obtain

λ̂j
k∆graph

≈ 1

∆graph
E
[
X

(j,∆graph )
k | {X(∆graph )

ℓ }ℓ=k−1,...,k−p

]
= the (k − p)-th component of

(
ZjĤ

(∆graph ,p)
j

)
.

Therefore, the intensity paths of the Hawkes graph case are omitted for the first p weeks.
Figure 4 presents the posterior intensity paths during the sample period for each industry type

and firm size in both the exponential decay kernel case and the Hawkes graph case. For easier
drawing, the posterior intensity of the Hawkes graph case can be plotted by a spline interpolation
between one week despite the week-wise constant paths, showing that the posterior intensity paths
of both cases are similar even though the magnitudes of the sizes are often different.
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6 Discussion

6.1 Validity of modeling the bankruptcy risk dependence structure with a
multidimensional Hawkes process

Without showing the results of a more comprehensive examination of the data, we assume that
bankruptcy intensity can be specified by the intensity process given in (1) of the simple-form
Hawkes process; in other words, we assume that the bankruptcy risk of some event type is excited
only when a firm’s bankruptcy occurs in the event type related to the underlying type via some
significant self- and/or mutually exciting properties.

Therefore, it is natural to suspect that only the contagion effect can explain bankruptcy
clusters.

For example, Azizpour et al. [1] study the intensity model for default clustering in the U.S.
corporate bond market both theoretically and empirically. Specifically, they assume that the
default intensity {λt} for firms rated by Moody’s is given in the following form:

λt = exp

(
a0 +

d∑
i=1

aiXi,t

)
+ Yt + Zt,

where (X1,t, . . . , Xd,t) are the d types of observable macroeconomic explanatory variables, Yt
represents the contagion (self-exciting) effect given by the following marked Hawkes intensity

Yt = b
∑

n:Tn≤t

e−κ(t−Tn)max{0, log un},

with the exponential decay kernel function (Tn and un means the n-th default time and total
amount of debt at that time, respectively), and Zt is the frailty term represented by the mean-
reverting process

dZt = k(z − Zt)dt+ σ
√

ZtdWt,

which are the same dynamics as the so-called Cox–Ingersoll–Ross short interest rate model.
Azizpour et al. [1] conclude that default clustering in the U.S. corporate bond market cannot

be sufficiently explained by the observable macroeconomic variables and frailty term, but can be
explained by adding the contagion term to them, finding that the contagion term plays the most
important role in this explanation.

Returning to our case, although we study multiple event types compared with the single event
type of Azizpour et al. [1], our bankruptcy intensity model also reduces to contain the contagion
term in a simpler form of the Hawkes process model. In this sense, it must be necessary to im-
prove the estimation accuracy of bankruptcy intensity by using certain observable macroeconomic
variables and/or latent variables. Such model improvement is left to future research.

However, it would be worthwhile investigating whether the Hawkes graph estimation is suffi-
ciently tractable to analyze such credit event data and view what contagion relations are found
through the Hawkes graph estimation in naive form, even though the contagion effect may be
overestimated by omitting other possible channels on the bankruptcy clusters.

Moreover, from the estimation result of Azizpour et al. [1] carefully, only the GDP growth
rate is accepted for the intensity model among the dozens of macroeconomic variables used (e.g.,
government statistics, stock indexes, interest rate)4. This finding indicates that specifying observ-
able variables to characterize the occurrence of default or bankruptcy events is difficult. Indeed,

4The authors tried to naively estimate a Poisson regression model with dozens of macroeconomic variables for
our data on the weekly bin-count sequences of bankruptcies, but found no significant observations.
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Figure 5: The Hawkes graphs estimated for the four industry types (left) and three firm sizes
(right) under the assumption of αskel = αgraph = 0.025. The other tuning parameters are the
same as in the original estimation.

clarifying the relation between the observable variables and credit risks remains one of the main
subjects in credit risk research.

6.2 Effect of the tuning parameter choice on the Hawkes graph estimation

Section 4.4 explained which tuning parameters are necessary to estimate the Hawkes graph and
discussed how to determine their values for the estimation. Here, we examine how the estimation
result of the Hawkes graph can change according to the selection of the tuning parameters by
using values different from the original assumption in the previous section.

We try the following examination and see the estimation results:

• For αskel , αgraph , we assume 0.025 (originally 0.05) so that the edges of the Hawkes graph
are hard to survive because of the lower significance level.

• For p, we try all the values from two to 10 for both types (originally four for the industry
type and two for the firm size).

• For ∆skel , we try 28/365 and 35/365 (originally 21/365).

Effect of a smaller αskel , αgraph

Figure 5 displays the estimation results with the lower two-sided 5% significance level from αskel =
αgraph = 0.025. As a consequence, the confidence intervals of the estimated parameters with
αskel = αgraph = 0.025 are wider than those in the case of 0.05, meaning that only one oriented
edge vanishes from the original graphs presented in Figure 3 for both types.

Hence, the original choice of αskel = αgraph = 0.025 does not seem so strict or indulgent, at
least for our data.

Effect of changing p

Next, we show the estimation results for two values of the self- and/or mutually exciting duration
parameter p in Figure 6 for the industry types and Figure 7 for the firm sizes.

17



Figure 6: The estimated Hawkes graph of the industry types with p = 2 (left) and p = 6 (right).

Figure 7: The estimated Hawkes graph of the firm sizes with p = 4 (left) and p = 6 (right).

For the industry types, we obtain the same result for p = 3 and p = 5 as in the original case
(p = 4). However, the result with p = 2 is different, rather similar to the graph generated from the
estimation of the exponential decay kernel case displayed in the left panel of Figure ??. Moreover,
for 6 ≤ p ≤ 10, some of the effects caused by bankruptcies in the manufacturing industry are
likely to be unstable.

For the firm sizes, we obtain the same graph for p = 3, 4, 5 as in the original case (p = 2). The
mutually exciting property from small to medium firms vanishes for p = 6, 7 and the exogenous
intensity for large firms is not significant for p = 8, 9, 10.

In summary, the final graphs obtained for the various p values from two to 10 do not seem
so different. Nonetheless, the confidence intervals of the edges may vary largely because the total
effect of the edges approximated by the sum of the estimated kernels during the duration may
vary largely.

Finally, for the skeleton bin size parameter ∆skel , we suppose 28/365 and 35/365 compared
with the original 21/365 to estimate the Hawkes graphs for both event types. For the firm sizes,
the estimation results for both ∆skel = 28/365 and 35/365 are the same as in the original case; by
contrast, for the industry types, the obtained graphs are different between the longer ∆skel cases
and the original.

Figure 8 shows the estimated Hawkes graphs for ∆skel = 28/365 and 35/365, which coincide
except for certain confidence intervals; however, these differ from the left graph of Figure 3 for
the original ∆skel = 21/365: for example, the self-exciting property of manufacturing as well as
the mutually exciting properties from manufacturing to finance and from D&I to manufacturing
vanish, while the mutually exciting property from D&I to service appears.

Indeed, the original ∆skel = 21/365 case selects the following six edges in the Hawkes skeleton
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Figure 8: The estimated Hawkes graphs for the industry types under the assumption that ∆skel =
28/365 (left) and ∆skel = 35/365 (right).

estimation: from manufacturing to manufacturing, D&I, and finance, from D&I to manufacturing,
and from finance to manufacturing and finance; it also selects these six edges for the Hawkes graph.
On the contrary, the ∆skel = 28/365 case selects the following five edges in the Hawkes skeleton
estimation: from manufacturing to D&I, from D&I to service, and from finance to manufacturing,
D&I, and finance; it also omits the edge from finance to D&I for the Hawkes graph. The ∆skel =
35/365 case is the same as the ∆skel = 28/365 case except for not selecting the edge from finance
to D&I in the skeleton estimation.

Consequently, how to determine the skeleton bin size parameter ∆skel is important, since the
edges chosen at the skeletons can depend on the skeleton bin size parameter as seen above and the
edges of the Hawkes graphs are chosen from only the edges that survive in the skeleton estimation.
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6.3 Influence of the sample period on the Hawkes graph estimation

The original analysis of the bankruptcy risk dependence structure in Japan used the whole avail-
able sample from 2003 to 2015. Naively, the result may be strongly influenced by the period from
2008 to 2010, which includes the global financial crisis triggered by the so-called subprime shock
and Lehman shock and during which more bankruptcies of large firms such as Lehman Brothers
and Japan Airlines as well as financial firms than the other periods occurred.

Therefore, we re-estimate the Hawkes graph for four subsample periods for both the four
industry types and the three firm sizes: (1) 2003 to 2007, (2) 2003 to 2010, (3) 2008 to 2015, and
(4) 2011 to 2015. The tuning parameters are assumed to be the same as in the original analysis
(see Section 4.4).

Figures 9 and 10 present the estimation results for the industry types and firm sizes, respec-
tively. For both types, the Hawkes graphs estimated for 2008–2015 contain the most edges. In
particular, a mutually exciting property from finance to manufacturing and from large to medium
firms clearly appears.

On the contrary, only one small-weight edge from manufacturing to finance appears for the
industry type and no edges appear for firm size for the 2011―2015 estimation, which implies
that the bankruptcies of any sized firm during that period occurred according to the Poisson
distribution.

In summary, the estimation result with all the available data must be mainly caused by the
clusters of bankruptcies around 2008–2010. In other words, the several self- and/or mutually
exciting properties estimated during 2008–2010 may have simply been caused by an inactive
macroeconomy rather than contagion effects. Therefore, we must extend the bankruptcy intensity
model to include the explicit macroeconomic variables in addition to the contagion effects modeled
by the original Hawkes process and examine whether there exist self- and/or mutually exciting
properties, even after controlling for the observable variables.
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The estimation period: 2003–2007. The estimation period: 2003–2010.
　

The estimation period: 2008–2015. The estimation period: 2011–2015.
　

Figure 9: The Hawkes graphs for the industry types estimated for the different sample periods.
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The estimation period: 2003–2007. The estimation period: 2003–2010.
　

The estimation period: 2008–2015. The estimation period: 2011–2015.
　

Figure 10: The Hawkes graphs for the firm sizes estimated for the different sample periods.
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7 Conclusion

By applying the multidimensional Hawkes process to analyze bankruptcy risk dependence, we ex-
amine whether the Hawkes graph approach introduced by Embrechts and Kirchner [4] is applicable
even though it was originally invented for large event-stream datasets with many event types such
as high-frequency data on limit order books. For this purpose, we use data on the bankruptcies of
Japanese firms in the Tokyo metropolitan area and the surrounding three prefectures from 2003
to 2015, and we classify the sample into four industry types and three firm sizes.

With this dataset, we estimate the exponentially decaying kernel function by using the conven-
tional maximum likelihood estimation, while we also test the Hawkes graph approach on the data
transformed into count time-series data consisting of the number of bankruptcies that occurred
every one or more weeks. The presented results confirm that both these estimation approaches
for the multidimensional Hawkes process model provide similar results, at least for our data. This
finding means that the Hawkes graph approach is applicable for examining credit risk dependence
with the multidimensional Hawkes process, and it may be more appropriate for understanding the
time-series structure of risk dependence than the conventional maximum likelihood estimation if
the actual exciting effects do not follow the exponentially decaying style.

However, we should pay attention to our choice of the tuning parameters necessary for the
Hawkes graph approach since some can influence the estimation results when changing the pa-
rameter values. In addition, the results are dependent upon the data period used.

Future research could extend our findings in a number of directions. First, it could reclassify
the sample, or find a perspective for classification other than industry type and firm size, to
better understand the bankruptcy contagion mechanism among firms. For example, it seems
promising to distinguish whether a bankrupt firm is liquidated or reconstructed. Next, future
studies could improve the Hawkes graph approach, for example by using some of the observable
macroeconomic variables and/or latent variables. Such an improvement would enable us to resolve
the overestimation of the self- and/or mutually exciting effects as well as dependence of the results
on the sample period because of the proxy effects of the macroeconomic variables (i.e., commonly
ignored factors and/or featured periods). We will aim to address such issues in future research.
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A Complement to the procedure of the Hawkes graph estimation

Here, we describe the computational procedure of the square σ̂2
i,j of the standard error for the

estimator âiℓ,j achieved by the time integral of the kernel function for the edge (i, j) according to
Embrechts and Kirchner [4]. This standard error is important for judging whether the underlying
oriented edge for estimating the Hawkes skeleton and Hawkes graph is significant.

Calculation of σ̂2
i,j in the Hawkes skeleton estimation

The following algorithm for calculating σ̂2
i,j in the Hawkes skeleton estimation is given as Algo-

rithm 1 of Embrechts and Kirchner [4]; however, we rewrite it for our argument.

1. Let E ∈ {0, 1}m2×(m2p+m) be a matrix given by arranging row-wise from the top to bottom
the row vectors given as the transpose of the vectors E1, . . . ,Em2 , where E(i−1)m+j is an
(m2p+m)-dimensional vector with zero components other than the one in the ((k−1)m2+(i−
1)m+ j) components for k ∈ [p].

2. By using the data matrix given in (6), we compute the matrix calculation ofE(Z⊤Z)−1Z⊤⊗
1m×m ∈ Rm2×(m(n−p)). We then transpose each row vector in the obtained matrix to a
column vector and arrange all the column vectors in a line from the top to bottom to obtain
the m3(n− p)-dimensional vector. In addition, we divide the column vector into m2(n− p)
vectors whose dimension is m, transpose each divided column vector to a row vector, and
obtain the Rm2(n−p)×m matrix C by arranging the transposed row vectors row-wise from
the top to bottom.

3. Compute the matrix operation (Up+1,Up+2, · · · ,Un)
⊤ := U = (Y − ∆ZĤ(∆skel ,p)) ∈

R(n−p)×m. Consequently, each m-dimensional row vector of U can be represented by

Uk =
(
X

(∆)
k −∆µ̂−

∑p
ℓ=1∆Ĥ⊤

ℓ X
(∆)
k−ℓ

)
(k = p + 1, p + 2, · · · , n). Moreover, denote by

U (rep) ∈ Rm2(n−p)×m the matrix given by arranging m2 copies of U row-wise.

4. Calculate the Hadamard product of C⊙U (rep) and obtain the m2(n−p)-dimensional column
vector as the square of the sum of the m components in each row of the Hadamard product.
Next, divide this vector into m2 vectors whose dimension is (n− p), transpose each divided
column vector to a row vector, and obtain the Rm2×(n−p) matrix by arranging the transposed
row vectors row-wise from the top to bottom. Furthermore, achieve the m2-dimensional
column vector as the sum of the (n− p) components in each row of the last matrix.

5. Finally, we can see the Rm×m matrix (σ̂i,j)(i,j)∈[m]2 by dividing the last vector into the m
vectors whose dimension is m. Transpose each m-dimensional vector to a row vector and
obtain the Rm×m matrix by arranging the transposed row vectors row-wise.

Calculation of σ̂2
iℓ,j

and σ̂2
j in the Hawkes graph estimation

Finally, we confirm the algorithm used to calculate σ̂2
i,j in the Hawkes graph estimation after the

skeleton is obtained, as given in Algorithm 2 of Embrechts and Kirchner [4].
For this purpose, we reselect with a (ideally much smaller) unit time size ∆graph the mj-

dimensional vector, which stands for the kernel estimates in the new k-th period k∆graph , denoted
by

ĤPA(j)(k∆graph) := (ĥi1→j(k∆graph), ĥi2→j(k∆graph), · · · , ĥimj→j(k∆graph)),
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where k ∈ [p], PA(j) = {i1, i2, . . . , imj}. We also denote by Ĥ
(∆graph ,p)
j the (pmj + 1)-dimensional

vector obtained by arranging the mj-dimensional vectors ĤPA(j)(∆graph), . . . , ĤPA(j)(p∆graph) in
order and then attaching µ̂j at the end.

The estimated vector Ĥ
(∆graph ,p)
j is achieved by

Ĥ
(∆graph ,p)
j =

1

∆graph

(
Z⊤

j Zj

)−1
Z⊤

j Yj ,

where these Yj and Zj stand for the matrices estimated for only the j-th event type given in (5)
and (6) with ∆ = ∆graph and m = mj , respectively.

As seen below, almost the same algorithm as the Hawkes skeleton estimation yields the squared
standard error σ̂2

iℓ,j
of the candidate edge (iℓ, j) of the Hawkes graph with ℓ ∈ [mj ], j ∈ [m],

implying the confidence interval to see if the edge is significant.

1. For (iℓ, j), denote by e(iℓ, j) the (mjp+1)-dimensional vector where one is in the (k−1)mj+ℓ-
th components (k ∈ [p]) and zero otherwise.

2. Calculate the (n− p)-dimensional vector Cl,j :=

((
Z⊤

j Zj

)−1
Z⊤

j

)⊤
e(iℓ, j).

3. Calculate the (n− p)-dimensional vector Uj = Yj −∆graphZjĤ
(∆graph ,p)
j .

4. Obtain σ̂2
iℓ,j

by taking the sum of the squared components of the Hadamard product of
Cℓ,j ⊙Uj .

5. In addition, obtain the squared standard error σ̂2
j of exogenous intensity µj (the j-th vertex)

by multiplying by ∆−2
graph the sum of the squared components of the Hadamard product of

ZLast ⊙Uj , where ZLast is defined as the last row of the matrix
(
(Z⊤

j Zj)
−1Z⊤

j

)
.
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